論文リスト : CSU-W1

[1] J. Alcaraz et al., “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol., vol. 19, no. 3, pp. 224–237, 2017.

[2] A. I. Baba et al., “Functional analysis of the arabidopsis thaliana CDPK-related kinase family: AtCRK1 regulates responses to continuous light,” Int. J. Mol. Sci., vol. 19, no. 5, 2018.

[3] A. Baba et al., “High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates,” Neuron, vol. 94, no. 6, pp. 1085-1100.e6, 2017.

[4] R. Clements, R. Turk, K. P. Campbell, and K. M. Wright, “Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development,” J. Neurosci., vol. 37, no. 35, pp. 8559–8574, 2017.

[5] M. Doumane, Y. Jaillais, C. Lionnet, M.-C. Caillaud, and V. Bayle, “Automated Tracking of Root for Confocal Time-lapse Imaging of Cellular Processes,” Bio-Protocol, vol. 7, no. 8, 2017.

[6] B. T. Drumm, K. D. Keef, K. M. Sanders, C. A. Cobine, and S. A. Baker, “Inhibitory Neural Regulation of the Ca2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine,” Front. Physiol., vol. 9, no. APR, p. 328, 2018.

[7] C.-H. L. Eng et al., “Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+,” Nature, 2019.

[8] C. Espinosa-Diez et al., “MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence, and angiogenic signaling article,” Cell Death Dis., vol. 9, no. 6, p. 632, 2018.

[9] C. Fassnacht, C. Tocchini, P. Kumari, D. Gaidatzis, M. B. Stadler, and R. Ciosk, “The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans,” PLoS Genet., vol. 14, no. 3, p. e1007252, 2018.

[10] K. Fischer et al., “Indirect ELISA based on Hendra and Nipah virus proteins for the detection of henipavirus specific antibodies in pigs,” PLoS One, vol. 13, no. 4, p. e0194385, 2018.

[11] R. Fujita et al., “Association of M18BP1/KNL2 with CENP-A Nucleosome Is Essential for Centromere Formation in Non-mammalian Vertebrates,” Dev. Cell, vol. 42, no. 2, pp. 181-189.e3, 2017.

[12] E. Gonzales-Vigil et al., “Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation,” Proc. Natl. Acad. Sci., vol. 115, no. 27, pp. E6366–E6374, 2018.

[13] B. R. Graziano, D. Gong, K. E. Anderson, A. Pipathsouk, A. R. Goldberg, and O. D. Weiner, “A module for Rac temporal signal integration revealed with optogenetics,” J. Cell Biol., vol. 216, no. 8, pp. 2515–2531, 2017.

[14] S. Hackelberg et al., “Reducing CXCR4-mediated nociceptor hyperexcitability reverses painful diabetic neuropathy,” J. Clin. Invest., vol. 128, no. 6, pp. 2205–2225, 2018.

[15] Y. Hamamura, M. Nishimaki, H. Takeuchi, A. Geitmann, D. Kurihara, and T. Higashiyama, “Live imaging of calcium spikes during double fertilization in Arabidopsis,” Nat. Commun., vol. 5, p. 4722, 2014.

[16] A. Harada et al., “A chromatin integration labelling method enables epigenomic profiling with lower input,” Nat. Cell Biol., vol. 21, no. 2, pp. 287–296, 2019.

[17] J. C. Hardwick et al., “Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability,” Am. J. Physiol. - Cell Physiol., vol. 313, no. 2, pp. C219–C227, Aug. 2017.

[18] R. J. Hatch, Y. Wei, D. Xia, and J. Götz, “Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment,” Acta Neuropathol., vol. 133, no. 5, pp. 717–730, 2017.

[19] T. J. Heppner, G. W. Hennig, M. T. Nelson, and M. A. Vizzard, “Rhythmic Calcium Events in the Lamina Propria Network of the Urinary Bladder of Rat Pups,” Front. Syst. Neurosci., vol. 11, p. 87, 2017.

[20] T. Higashiyama, H. Arata, N. Sugimoto, Y. Sato, and N. Yanagisawa, “Capability of tip-growing plant cells to penetrate into extremely narrow gaps,” Sci. Rep., vol. 7, no. 1, p. 1403, 2017.

[21] K. Hynynen et al., “Investigating the efficacy of a combination Aβ-targeted treatment in a mouse model of Alzheimer’s disease,” Brain Res., vol. 1678, pp. 138–145, 2017.

[22] Y. Ishikawa, A. Kamikouchi, N. Okamoto, M. Nakamura, and H. Kim, “Anatomic and Physiologic Heterogeneity of Subgroup-A Auditory Sensory Neurons in Fruit Flies,” Front. Neural Circuits, vol. 11, p. 46, 2017.

[23] S. Ito et al., “Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells,” Nat. Commun., vol. 8, no. 1, p. 1834, 2017.

[24] C. L. Jackson et al., “A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets,” Nat. Commun., vol. 9, no. 1, p. 1332, Dec. 2018.

[25] D. J. Jhaveri et al., “Evidence for newly generated interneurons in the basolateral amygdala of adult mice,” Mol. Psychiatry, vol. 23, no. 3, pp. 521–532, 2018.

[26] C. Kural et al., “Membrane mechanics govern spatiotemporal heterogeneity of endocytic clathrin coat dynamics,” Mol. Biol. Cell, vol. 28, no. 24, pp. 3480–3488, Aug. 2017.

[27] C. Kural et al., “Mechanoregulation of clathrin-mediated endocytosis,” J. Cell Sci., vol. 130, no. 21, pp. 3631–3636, 2017.

[28] N. Kurup, D. Yan, K. Kono, and Y. Jin, “Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans,” PLoS Genet., vol. 13, no. 6, p. e1006844, 2017.

[29] H. M. Lauridsen and A. L. Gonzalez, “Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers,” PLoS One, vol. 12, no. 2, p. e0171386, 2017.

[30] A. Marín-Llauradó, L. Valon, G. Charras, X. Trepat, and T. Wyatt, “Optogenetic control of cellular forces and mechanotransduction,” Nat. Commun., vol. 8, p. 14396, 2017.

[31] K. Minegishi et al., “A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking,” Dev. Cell, vol. 40, no. 5, pp. 439-452.e4, 2017.

[32] X. Morin, R. Goiame, C. Baek, S. Tozer, and E. Fischer, “Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors,” Neuron, vol. 93, no. 3, pp. 542-551.e4, 2017.

[33] S. Münster, A. Jain, A. Mietke, A. Pavlopoulos, S. W. Grill, and P. Tomancak, “Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects,” Nature, 2019.

[34] T. Ogawa and N. Hirokawa, “Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis,” Cell Rep., vol. 12, no. 11, pp. 1774–1788, Jul. 2015.

[35] M. Ohgushi, M. Minaguchi, M. Eiraku, and Y. Sasai, “A RHO Small GTPase Regulator ABR Secures Mitotic Fidelity in Human Embryonic Stem Cells,” Stem Cell Reports, vol. 9, no. 1, pp. 58–66, 2017.

[36] M. Okumura, T. Natsume, M. T. Kanemaki, and T. Kiyomitsu, “Dynein–Dynactin–NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble,” Elife, vol. 7, 2018.

[37] M. Prigge et al., “Functional characterization of sodium-pumping rhodopsins with different pumping properties,” PLoS One, vol. 12, no. 7, p. e0179232, 2017.

[38] B. E. Rembetski et al., “ Excitatory Neuronal Responses of Ca 2+ Transients in Interstitial Cells of Cajal in the Small Intestine ,” Eneuro, vol. 5, no. 2, p. ENEURO.0080-18.2018, 2018.

[39] M. Sakr et al., “Tracking the Cartoon mouse phenotype: Hemopexin domain– dependent regulation of MT1-MMP pericellular collagenolytic activity,” J. Biol. Chem., vol. 293, no. 21, pp. 8113–8127, 2018.

[40] M. L. Schmidt and T. Hoenen, “Characterization of the catalytic center of the Ebola virus L polymerase,” PLoS Negl. Trop. Dis., vol. 11, no. 10, p. e0005996, 2017.

[41] A. Schnittger et al., “Pollen differentiation as well as pollen tube guidance and discharge are independent of the presence of gametes,” Development, vol. 145, no. 1, p. dev152645, 2018.

[42] F. Schueder et al., “Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT,” Nat. Commun., vol. 8, no. 1, p. 2090, 2017.

[43] A. V. Singh, S. Baylan, B. W. Park, G. Richter, and M. Sitti, “Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties,” PLoS One, vol. 12, no. 4, p. e0175428, 2017.

[44] B. Souquet et al., “Erratum: Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells (Cell Reports (2018) 23(8) (2443–2454), (S2211124718306296) (10.1016/j.celrep.2018.04.070)),” Cell Rep., vol. 25, no. 7, p. 1994, 2018.

[45] Y. Suzuki et al., “Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg,” Sci. Rep., vol. 9, no. 1, p. 8461, 2019.

[46] L. Tang et al., “Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development,” Plant Cell, vol. 29, no. 10, pp. 2433–2449, 2017.

[47] M. Ueda et al., “Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis,” Dev. Cell, vol. 34, no. 2, pp. 242–251, 2015.

[48] G. Vieira De Oliveira, M. Morgado, C. A. Conte-Junior, and T. S. Alvares, “Acute effect of dietary nitrate on forearm muscle oxygenation, blood volume and strength in older adults: A randomized clinical trial,” PLoS One, vol. 12, no. 11, pp. 2854–2874, Aug. 2017.

[49] N. Vukašinović et al., “Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis,” New Phytol., vol. 213, no. 3, pp. 1052–1067, Aug. 2017.

[50] E. Yaksi et al., “Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish,” BMC Biol., vol. 16, no. 1, p. 45, 2018.

[51] K. Yamagata et al., “Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging,” Sci. Rep., vol. 9, no. 1, p. 4050, 2019.

[52] T. Yamazaki et al., “Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase,” PLoS One, vol. 12, no. 5, p. e0177764, 2017.

[53] N. Yanagisawa and T. Higashiyama, “Quantitative assessment of chemotropism in pollen tubes using microslit channel filters,” Biomicrofluidics, vol. 12, no. 2, p. 24113, Jul. 2018.

[54] E. Yoshida et al., “In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera,” Sci. Rep., vol. 8, no. 1, p. 8324, 2018.

[55] M. Yoshihara, H.-S. Cho, N. Hirokawa, Y. Tanaka, and M. Morikawa, “The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation,” Cell Rep., vol. 23, no. 13, pp. 3864–3877, 2018.

[56] E. Zalckvar et al., “Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact,” Nat. Commun., vol. 9, no. 1, p. 1761, 2018.

[57] B. Zobiak and A. V. Failla, “Advanced spinning disk-TIRF microscopy for faster imaging of the cell interior and the plasma membrane,” J. Microsc., vol. 269, no. 3, pp. 282–290, Jul. 2018.






  Follow us Share our application
•Twitter @Yokogawa_LS Share on Twitter
•Facebook Yokogawa Life Science Share on Facebook
•LinkedIn Yokogawa Life Science Share on LinkedIn


Social Media Account List


  • ライフサイエンス



  • 共焦点スキャナユニット CSU