DLM2000 シリーズ ディジタルオシロスコープ ミックスドシグナルオシロスコープ OPERATION GUIDE

オペレーションガイド 基本操作

ユーザー登録のお願い

今後の新製品情報を確実にお届けするために、お客様にユーザー登録をお願いして おります。当社 Web サイトにあるユーザー登録のページでご登録ください。

http://www.yokogawa.com/jp-ymi/

計測相談のご案内

当社では、お客様に正しい計測をしていただけるよう、当社計測器製品の仕様、機種の選定、および応用に関するご相談を下記カスタマサポートセンターにて承っております。なお、価格や納期などの販売に関する内容については、最寄りの営業、 代理店にお問い合わせください。

横河計測株式会社 カスタマサポートセンター

【フリーダイヤル受付時間:祝祭日を除く月~金曜日の9:00~12:00、13:00~17:00】

はじめに

このたびは、ディジタルオシロスコープ/ミックスドシグナルオシロスコープDLM2000 シリーズをお買い上げいただきましてありがとうございます。このオペレーションガイ ドは、DLM2000の取り扱い上の注意や基本的な操作などを説明したものです。ご使用 前にこのマニュアルをよくお読みいただき、正しくお使いください。

お読みになったあとは大切に保存してください。ご使用中に操作がわからなくなったときなどにきっとお役に立ちます。なお、DLM2000シリーズのマニュアルとして、このマニュアルを含め、次のものがあります。あわせてお読みください。

マニュアル名	マニュアル No.	内容
DLM2000 シリーズ ディジタルオシロスコープ ミックスドシグナルオシロスコープ ユーザーズマニュアル (機能編)	IM 710105-01	付属の CD に pdf データが納められて います。本機器の機能について説明し ています。
DLM2000 シリーズ ディジタルオシロスコープ ミックスドシグナルオシロスコープ ユーザーズマニュアル (操作編)	IM 710105-02	付属の CD に pdf データが納められて います。本機器の各設定操作について 説明しています。
DLM2000 シリーズ ディジタルオシロスコープ ミックスドシグナルオシロスコープ オペレーションガイド(基本操作)	IM 710105-03	本書です。本機器の取り扱い上の注意 や基本的な操作について、説明してい ます。
DLM2000 シリーズ ディジタルオシロスコープ ミックスドシグナルオシロスコープ 通信インタフェース ユーザーズマニュアル	IM 710105-17	付属の CD に pdf データが納められて います。本機器の通信インタフェース の機能について、その操作方法を説明 しています。
DLM2000 Series Digital Oscilloscope Mixed Signal Oscilloscope	IM 710105-92	中国向け文書
各国や地域の当社営業拠点の連絡会	先は、下記のシー	トに記載されています。

ドキュメント No.	内容
PIM 113-01Z2	国内海外の連絡先一覧

ご注意

- 本書の内容は、性能・機能の向上などにより、将来予告なしに変更することがあります。
 また、実際の画面表示内容が本書に記載の画面表示内容と多少異なることがあります。
- 本書の内容に関しては万全を期していますが、万一ご不審の点や誤りなどお気づきの ことがありましたら、お手数ですが、お買い求め先か、当社支社・支店・営業所まで ご連絡ください。
- ・ 本書の内容の全部または一部を無断で転載、複製することは禁止されています。
- ・ 保証書が付いています。再発行はいたしません。よくお読みいただき、ご理解のうえ 大切に保存してください。
- 本製品のTCP/IP ソフトウェア、およびTCP/IP ソフトウェアに関するドキュメントは、 カリフォルニア大学からライセンスされた BSD Networking Software, Release 1 をも とに当社で開発 / 作成したものです。

商標

- Microsoft、Internet Explorer、MS-DOS、Windows、Windows 7、Windows 8、 Windows 8.1、および Windows 10 は、米国 Microsoft Corporation の、米国およびその他の国における登録商標または商標です。
- ・ Adobe、Acrobat は、アドビシステムズ社の登録商標または商標です。
- ・ DLM は横河電機株式会社の登録商標です。
- ・ 本文中の各社の登録商標または商標には、®、TM マークは表示していません。
- ・ その他、本文中に使われている会社名、商品名は、各社の登録商標または商標です。

13h Edition: October 2017 (YMI)

All Rights Reserved, Copyright © 2008 Yokogawa Electric Corporation All Rights Reserved, Copyright © 2011 Yokogawa Test & Measurement Corporation

当社製品を廃棄するときは

当社製品を廃棄するときは、廃棄する国、地域の法令に従って廃棄してください。

履歴

- 2008年11月 初版発行
 2009年3月 2版発行
 2009年7月 3版発行
 2010年2月 4版発行
 2011年4月 5版発行
 2012年7月 6版発行
 2013年8月 7版発行
- · 2013年12月 8版発行
- · 2014年8月 9版発行
- ・ 2015 年 5 月
 10 版発行
- · 2016年1月 11版発行
- · 2016年10月 12版発行
- · 2017年10月 13版発行

梱包内容の確認

梱包箱を開けたら、ご使用前に以下のことを確認してください。万一、お届けした品の 間違いや品不足、または外観に異常が認められる場合は、お買い求め先にご連絡ください。

DLM2000 本体

背面の銘板に記載されている MODEL(形名)と SUFFIX(仕様コード)で、ご注文どおりの品であることを確認してください。

MODEL	仕様	コート	: *1	
710105				ディジタルオシロスコープ DLM2022 2ch アナログ、200MHz
710110				ミックスドシグナルオシロスコープ DLM2024 4ch アナログ+
				8bits 切り替えロジック、200MHz
710115				ディジタルオシロスコープ DLM2032 2ch アナログ、350MHz
710120				ミックスドシグナルオシロスコープ DLM2034 4ch アナログ+
				8bits 切り替えロジック、350MHz
710125				ディジタルオシロスコープ DI M2052 2ch アナログ、500MHz
710130				$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$
710130				8bits 切り替えロジック、500MHz
電源コード ^{*2}	-M			UL/CSA 規格適合、PSE 適合、最大定格電圧:125V、3 極 -2 極
				変換アダプタ (PSE 適合、日本国内でのみ使用可) 付き
	-D			UL/CSA 規格適合、PSE 適合、最大定格電圧:125V
	-F			VDE 規格適合、最大定格電圧:250V
	-Q			BS 規格適合、最大定格電圧:250V
	-R			AS 規格適合、最大定格電圧:250V
	-H			GB 規格適合、最大定格電圧:250V
	-N			NBR 規格適合、最大定格電圧:250V
言語		-HJ		日本語
(メッセージ言	語の	-HE		英語
出荷時設定と	パネル	-HC		中国語
シートの言語、	、1つ	-HG		ドイツ語
だけ選択可)		-HF		フランス語
		-HK		韓国語
		-HL		イタリア語
		-HS		スペイン語
付加仕様			/LN	切替ロジック入力なし(4CH モデルのみ)
(オノンヨノ)			/ DD / M1 C	内蔵ノリノダ メエリザ連 ~25M/25M/625M ポイン(ト (20日 エデルの7))
			/10115	アモリ拡張 0.2310/2310/02.3101 小イフト (2CH モノルのみ)
			////	メモリ拡張 0.25W/25W/02.3W ホイント (4CH モデルのみ)
			/1/12	メモリ 拡張 12.500/02.500/12500 ポイント (400 モデルのみ)
			/1015 /P2	アビゲ 孤張 Z5W/Z5W/Z5W/Z5W/ズインド (4CH ビアルのの) 背面パネル プローブパワー 健子 (2 健子 2CH モデルのみ)
			/P2	背面パネル プローブパワー端子 (4 端子 4 CH モデルのみ)
			/[1	$GP-IR \land \forall $
			/C10	$A = \pm \frac{1}{2} + \frac{1}{2} $
			/C11	$GP-IB \rightarrow 7 \rightarrow $
			/C8	は、19 19 19 19 19 19 19 19 19 19 19 19 19 1
			/C9	内蔵ストレージ (7.2GB)
			/G2	ユーザー定義演算 (4CH モデルのみ)
			/G3	電源解析機能 (4CH モデルのみ)
			/G4	電源解析機能 (ユーザー定義演算含む、4CH モデルのみ)
			/F1	UART トリガ&解析 (4CH モデルのみ)
			/F2	I ² C+SPI トリガ&解析 (4CH モデルのみ)
			/F3	UART+I ² C+SPI トリガ&解析 (4CH モデルのみ)
			/F4	CAN+LIN トリガ&解析 +CXPI 解析 (4CH モデルのみ)
			/F5	FlexRay トリガ&解析 (4CH モデルのみ)
			/F6	CAN+LIN+FlexRay トリガ&解析 +CXPI 解析 (4CH モデルのみ)
			/F7	CAN+CAN FD+LIN トリガ&解析 +CXPI 解析 (4CH モデルのみ)
			/F8	CAN+CAN FD+LIN+FlexRay トリガ&解析 +CXPI 解析 (4CH モデ
			(5.2	
			/F9	SENI 解析 (4CH モデルのみ)
			/F10	PSI5 解析 (4CH モデルのみ)

MODEL	仕様コード ^{*1}	仕様内容
	/F11	SENT+PSI5 解析 (4CH モデルのみ)
	/EX22	701946 プローブ 2 本添付 (2ch、200MHz モデルのみ)
	/EX24	701946 プローブ 4 本添付 (4ch、200MHz モデルのみ)
	/EX52	701946 プローブ 2 本添付 (2ch、350/500MHz モデルのみ)
	/EX54	701946 プローブ 4 本添付 (4ch、350/500MHz モデルのみ)
*1 仕;	様コードに「7」が記載さ	れている製品には、専用のマニュアルが添付されている場合があ

- ります。標準のマニュアルと併せてお読みください。
- *2 付属の電源コードが、電源コードを使用する国や地域で指定している規格に適合していることを確認してください。

Note.

- 本機器ケースの銘板に記載の SUFFIX(仕様コード)は、工場出荷時のオプションの項目を示しています。オプション追加ライセンス*によりオプションを追加したあとは、本機器のオーバービュー画面でオプションの項目を確認してください。
- * オプション追加ライセンスの詳細については、ユーザーズマニュアル [機能編](IM 710105-01)の「22 その他の機能」の「オーバービュー」をご覧ください。

NO.(計器番号)

お買い求め先にご連絡いただく際には、この番号もご連絡ください。

付属品

次の付属品が添付されています。品不足や損傷がないことを確認してください。

品名	形名 / 部品番号	数量	仕様 / 備考
- 電源コード ^{*1}	A1006WD	1	UL/CSA 規格適合、PSE 適合
	A1009WD		VDE 規格適合
	A1054WD		BS 規格適合
	A1024WD		AS 規格適合
	A1064WD		GB 規格適合
	A1088WD		NBR 規格適合
3 極 -2 極変換アダプタ	A1253JZ	1	日本国内でのみ使用可、PSE 適合
			(電源コード仕様 -M のときに付属)
パネルシート	下図参照	1	日本語、中国語、ドイツ語、フランス語、
			韓国語、イタリア語、スペイン語のどれか
			1種類
500MHz パッシブプローブ *2	701939	4(2)	710120、710130は4本、710115、710125
			は2本
200MHz パッシブプローブ *3	701938	4(2)	710110は4本、710105は2本
底面脚用ゴム	B9989EX	1	_
ソフトケース	B8059GG	1	_
プリンタ用ロール紙 ^{*4}	B9988AE	1	_
フロントカバー	B8059EP	1	-
マニュアル一式			
	IM 710105-03	1	スタートガイド(本書)
	IM 710105-92	1	中国向け文書
	PIM 113-01Z2	1	国内海外の連絡先一覧
マニュアル CD	B8059RZ	1	ユーザーズマニュアルの pdf データを収録
			(収録されているマニュアルの種類につい
			ては、次ページをご覧ください。)

付属品は本機器の保証範囲に含まれません。

電源コード(仕様コードに合わせ、1本付属します。)*1

- *1 付属の電源コードが、電源コードを使用する国や地域で指定している規格に適合していることを確認してください。
- *2 /EX52 または /EX54 オプション付きの場合は、パッシブプローブ 701939 の代わりにミニチュ アパッシブプローブ 701946 が付属されます。
- *3 /EX22 または /EX24 オプション付きの場合は、パッシブプローブ 701938 の代わりにミニチュ アパッシブプローブ 701946 が付属されます。
- *4 内蔵プリンタ (/B5) 付きの場合にだけ付属します。

マニュアル CD

マニュアル CD の Japanese フォルダには、次の PDF データが収録されています。マニュ アル CD には英語のマニュアルも収録されています。

ファイル名	マニュアル名	マニュアル No.
機能編・操作編 .pdf	DLM2000 シリーズ	IM 710105-01
	ディジタルオシロスコープ	
	ミックスドシグナルオシロスコープ	
	ユーザーズマニュアル [機能編]	
	DLM2000 シリーズ	IM 710105-02
	ディジタルオシロスコープ	
	ミックスドシグナルオシロスコープ	
	ユーザーズマニュアル [操作編]	
通信インタフェース.pd	f DLM2000 シリーズ	IM 710105-17
	ディジタルオシロスコープ	
	ミックスドシグナルオシロスコープ	
	通信インタフェースユーザーズマニュアル	

上記の PDF データを閲覧するには、Adobe Reader が必要です。

警告

マニュアルCDを一般オーディオCDプレーヤーでは絶対に再生しないでください。 大音量による聴覚障害やスピーカ破損の恐れがあります。

アクセサリ(別売)

別売アクセサリとして、次のものがあります。アクセサリについてのお問い合わせやご 注文は、お買い求め先までご連絡ください。

- ・ 本書で指定されているアクセサリを使用してください。また、本機器のアクセサリは、 これらをアクセサリとして指定している当社製品にだけ使用してください。
- ・ 本機器のアクセサリを使用するときは、各アクセサリの仕様範囲内で使用してくださ い。本機器やアクセサリを組み合わせて使用する場合、定格が低い製品の仕様範囲内 で使用してください。

品名	形名 / 部品番号	販売 単位	仕様	マニュアル No.
横河専用プローブインタフェース 付き差動プローブ PBDH1000	701924	1	DC ~ 1GHz 帯域、1MΩ、最大± 35V	IM 701924-01
横河専用プローブインタフェース 付き差動プローブ PBDH0150	701927	1	DC ~ 150MHz 帯域、最大± 1400V	IM 701927-01JA
横河専用プローブインタフェース 付き電流プローブ PBC100	701928	1	DC ~ 100MHz 帯域、30Arms	IM 701028-01
横河専用プローブインタフェース 付き電流プローブ PBC050	701929	1	DC ~ 50MHz 帯域、30Arms	101701920 01
パッシュブプローブ	701938	1	DC ~ 200MHz 帯域、10MΩ	IM 701938-01
	701939	1	DC~500MHz帯域、10MΩ	IM 701939-01
ミニチュアパッシブプローブ	701946	1	DC ~ 500MHz 帯域、10MΩ	IM 701946-01JA
パッシブプローブ(広温度範囲)	702906	1	DC ~ 200MHz 帯域、10MΩ 使用温度範囲: - 40℃~+ 85℃(位相調整側を除く。)	IM 702906-01JA
ロジックプローブ PBL100	701988	1	100MHz トグル周波数、1MΩ	IM 701988-01
ロジックプローブ PBL250	701989	1	250MHz トグル周波数、100kΩ	IM 701989-01
100:1 高雷圧パッシブプローブ	701944	1	DC ~ 400MHz 帯域、1000Vrms、 長さ 1.2m	IM 701944-01
	701945	1	DC ~ 250MHz 帯域、1000Vrms、 長さ 3m	
FET プローブ *	700939	1	900MHz 帯域、2.5MΩ、1.8pF	IM 700939-01
	700924	1	DC ~ 100MHz 帯域、最大± 1400V	IM 700924-01
	700925	1	DC ~ 15MHz 帯域、最大± 500V	IM 700925-01J
	701920	1	DC ~ 500MHz 帯域、 最大 (同相入力) ± 30V	IM 701920-01
差動プローブ *	701921	1	DC ~ 100MHz 帯域、最大± 700V	IM 701921-01
	701922	1	DC ~ 200MHz 帯域、 最大 (同相入力) ± 60V	IM 701922-01
	701926	1	DC ~ 50MHz 帯域、 最大 (同相入力) 7000V	IM 701926-01
	701917	1	DC ~ 50MHz 帯域、5Arms	IM 701917-01JA
	701918	1	DC ~ 120MHz 帯域、5Arms	IM 701917-01JA
●法プロ_ブ*	701930	1	DC ~ 10MHz 帯域、150Arms	IM 701930-01
电加フローフ	701931	1	DC ~ 2MHz 帯域、500Arms	IM 701931-01
	701932	1	DC ~ 100MHz 帯域、30Arms	IM 701932-01
	701933	1	DC ~ 50MHz 帯域、30Arms	IM 701933-01
5GHz 抵抗プローブ PBL500	701974	1	_	IM 701974-01
デスキュー調整信号源	701936	1	約0~5V、約0~100mA、約0~1A、約15kHz	IM 701936-01JA
ミニクリップ変換	700971	1セット	-	-
BNC アダプタ	700972	1	_	-
ロジックプローブ アクセサリキット	701909	1セット	701989 用	_
プローブスタンド	701919	1	_	IM 701919-01
プリント基板用アダプタ	366945	1セット	パッシブプローブ 701939 用	_
ソルダインアダプタ	366946	1セット	パッシブプローブ 701939 用	_
GO/NO-GO 専用ケーブル	366973	1	-	_
ソフトキャリングケース	701964	1	DLM2000 シリーズ用、収納ポケット 3 個付き	_

アクセサリ (別売) は本機器の保証範囲に含まれません。 * プローブパワー端子 (/P4 オプション) または別売のプローブ電源 (701934) に接続して使用します。

補用品 (別売)

別売補用品として、次のものがあります。補用品についてのお問い合わせやご注文は、 お買い求め先までご連絡ください。

品名	部品番号	販売単位	備考
プリンタ用ロール紙	B9988AE	10	感熱紙、111mm × 10m

本機器を安全にご使用いただくために

本機器は、専門知識のある方がご使用いただくことを前提に開発された製品です。 本機器は IEC 規格保護クラス I (保護接地端子付き)の製品です。

本機器を正しく安全に使用していただくため、本機器の操作にあたっては下記の安全注 意事項を必ずお守りください。このマニュアルで指定していない方法で使用すると、本 機器の保護機能が損なわれることがあります。

このマニュアルは製品の一部として重要な内容を含んでいます。本機器を廃棄するまで、本機器を使用するときにすぐご覧になれるところに、このマニュアルを大切に保存してください。なお、これらの注意に反したご使用により生じた障害については、 YOKOGAWA は責任と保証を負いかねます。

本機器には、次のようなシンボルマークを使用しています。

① "取扱注意"(人体および機器を保護するために、ユーザーズマニュアルやサービスマニュアルを参照する必要がある場所に付いています。)

★ 接地、または機能接地端子(保護接地端子として使用しないでください。)

\sim	交流
--------	----

____ 直流

ON(電源)

) OFF(電源)

次の注意事項をお守りください。取扱者の生命や身体への危険や機器損傷の恐れがあ ります。

警告

本機器の用途

本機器は電気信号を観測・測定する波形測定器です。波形測定器としての用途以外には使用しないでください。

外観の確認

外観に異常が認められる場合は、本機器を使用しないでください。

電源

供給電源の電圧が本機器の定格電源電圧に合っていて、付属の電源コードの最大 定格電圧以下であることを確認したうえで、電源コードを接続してください。

電源コードとプラグ

感電や火災防止のため、電源コードおよび3極-2極変換アダプタ(日本国内での み使用可)はYOKOGAWAから供給されたものを必ずご使用ください。主電源プ ラグは保護接地端子を備えた電源コンセントにだけ接続してください。保護接地 線を備えていない延長用コードを使用すると、保護動作が無効になります。また、 本機器に付属されている電源コードを他の機器に使用しないでください。

保護接地

感電防止のため、本機器の電源を入れる前に、必ず保護接地をしてください。本 機器に付属の電源コードは接地線のある3極電源コードです。したがって、保護 接地端子のある3極電源コンセントを使用してください。また、3極-2極変換ア ダプタ(日本国内でのみ使用可)を使用する場合は、保護接地端子に変換アダプタ の接地線を確実に接続してください。

保護接地の必要性

本機器の内部または外部の保護接地線を切断したり、保護接地端子の結線を外さないでください。いずれの場合も本機器が危険な状態になります。

保護機能の欠陥

本機器を動作させる前に、保護接地やヒューズなどの保護機能に欠陥がないか確認してください。欠陥があると思われるときは、本機器を動作させないでください。

ガス中での使用

可燃性、爆発性のガスまたは蒸気のある場所では、本機器を動作させないでくだ さい。そのような環境下で本機器を使用することは大変危険です。

ケースの取り外し・分解・改造の禁止

当社のサービスマン以外は、本機器のケースの取り外し、分解、または改造しないでください。本機器内には高電圧の箇所があり、危険です。

外部接続

確実に保護接地をしてから、測定対象や外部制御回路への接続をしてください。 また、回路に手を触れる場合は、その回路の電源を切って、電圧が発生していな いことを確認してください。感電や事故防止のため、プローブや入力コネクタの グランドを測定対象の接地電位に接続してください。

測定カテゴリ

本機器の測定入力端子の測定カテゴリはなし「O(Other)」です。主電源の測定、 または測定カテゴリ II、III、および IV 内の測定に本機器を使用しないでください。

設置または使用する場所

- ・ 屋外、または雨や水にあたる場所に本機器を設置しないでください。また、そのような場所で本機器を使用しないでください。
- 本機器が異常または危険な状態になったときに、直ちに電源コードを外せるように設置してください。

アクセサリ

本書で指定されているアクセサリを使用してください。また、本機器のアクセサ リは、これらをアクセサリとして指定している当社製品にだけ使用してください。 異常のあるアクセサリは、使用しないでください。

使用環境の制限

本製品はクラスA(工業環境用)の製品です。家庭環境においては、無線妨害を生 ずることがあり、その場合には使用者が適切な対策を講ずることが必要となるこ とがあります。

各国や地域での販売について

廃電気電子機器指令

▲ 廃電気電子機器指令

🎝 (この指令は EU 圏内のみで有効です。)

この製品は WEEE 指令令マーキング要求に準拠します。このマークはこの電気電
 子製品を一般家庭廃棄物として廃棄してはならないことを示します。

製品カテゴリ

WEEE 指令に示される製品タイプに準拠して、この製品は"監視及び制御装置"の製品として分類されます。

EU 圏内で製品を廃棄する場合は、お近くの横河ヨーロッパ・オフィスまでご連絡ください。家庭廃棄物では処分しないでください。

EU 電池指令

EU 電池指令

くこの指令は EU 圏内のみで有効です)

この製品には電池が使用されています。このマークは、EU 電池指令に規定されています。分別収集が義務付けられていることを示しています。

電池の種類:リチウム電池

電池の交換はお客様ではできません。お近くの横河ヨーロッパ・オフィスまでご 連絡ください

EEA 内の認定代理人 (AR)

横河ヨーロッパ・オフィスは EEA 内で本製品の当社認定代理人 (AR) を務めます。横河ヨーロッパ・オフィスの住所については別紙のお問い合わせ先 (PIM 113-01Z2) をご覧ください。

このマニュアルの利用方法

このマニュアルの構成

このユーザーズマニュアルは、以下に示す第1章~第5章、付録で構成されています。

章	タイトル	
1	各部の名称	
		本機器の各部の名称とその働き、画面表示について説明しています。
2	測定を開始	
		使用上の注意、設置、電源への接続、電源スイッチの ON/OFF、モジュール の装着方法、プローブの接続のしかたなどについて説明しています。
3	基本操作	
		パネルキーやジョグシャトルの使い方、文字の入力方法、設定をデフォルト
		に戻す方法、オートセットアップ、日付時刻の設定などについて説明してい
		ます。
4	DLM2000 경	を操作する
		プローブ補償信号を使って、波形表示、垂直軸と水平軸の操作、トリガの操作、
		カーソル測定、波形のズーム、画面イメージのプリントと保存、波形の保存
		までの流れを簡単に説明しています。
5	仕様	
		機器本体の主な仕様を表にまとめています。
付録		
		時間軸設定 / サンプルレート / レコード長の関係について、参考資料を紹介 しています。

このマニュアルで使用している記号と表記法

単位

‹・・・・1000 の意味です。	使用例:100kS/s(サンプルレート)
<・・・・1024 の意味です。	使用例:720Kバイト(ファイルの容量)

表示文字

操作説明のところで、太字の英数字は、操作対象のパネル上のキーやソフトキーに対応 して画面上のメニューに表示される文字を示します。

注記

このマニュアルでは、注記を以下のようなシンボルで区別しています。

本機器で使用しているシンボルマークで、人体への危険や機器の損 傷の恐れがあることを示すとともに、その内容についてユーザーズ マニュアルを参照する必要があることを示します。ユーザーズマニュ アルでは、その参照ページに目印として、「警告」「注意」の用語と一 緒に使用しています。

警告 取り扱いを誤った場合に、使用者が死亡または重傷を負う危険があるときに、その危険を避けるための注意事項が記載されています。

注 意 取り扱いを誤った場合に、使用者が軽傷を負うか、または物的損害 のみが発生する危険があるときに、それを避けるための注意事項が 記載されています。

Note 本機器を取り扱ううえで重要な情報が記載されています。

目次

はじめに	i
梱包内容の確認	iii
本機器を安全にご使用いただくために	viii
各国や地域での販売について	x
このマニュアルの利用方法	xi

第1章 各部の名称と使い方

1.1	フロントパネル・リアパネル	1-1
1.2	操作キー / ノブ	1-3
1.3	表示画面	1-7

第2章 測定を開始する前に

2.1	使用上の注意2-
2.2	本機器を設置する2-
1.3	電源を接続する2-
1.4	プローブを接続する2-
1.5	プローブを位相補正する2-1
1.6	ロジックプローブを接続する2-1
2.7	パネルシートを取り付ける2-1
1.8 🔨	内蔵プリンタ (オプション)にロール紙を取り付ける

第3章 基本操作

3.1	キー / ジョグシャトルの操作と働き	
3.2	数値 / 文字列を入力する	3-3
3.3	USB キーボード /USB マウスで操作する	
3.4	日付時刻を合わせる	3-10
3.5	オートセットアップをする	3-12
3.6	設定を工場出荷時の設定 (デフォルト) に戻す	3-14
3.7	波形の取り込みを開始 / 停止する	3-15
3.8	キャリブレーションをする	3-16
3.9	ヘルプを表示する	3-17

第4章 DLM2000を操作する

4.1	測定信号を入力する	
4.2	波形の表示条件を変更する	
4.3	トリガ設定を変更する	
4.4	波形を測定する	
4.5	波形をズームする	
4.6) 波形をプリント / 保存する	

			目次
第5章	仕様		
	5.1	測定入力部	
	5.2	トリガ部	
	5.3	時間軸	
	5.4	表示部	
	5.5	機能	
	5.6	内蔵プリンタ (/B5 オプション)	5-15
	5.7	ストレージ	5-15
	5.8	周辺機器接続用 USB	5-15
	5.9	補助入出力部	5-16
	5.10	コンピュータインタフェース	5-17
	5.11	一般仕様	5-18
	5.12	外形図	5-21

付録

付録 1	時間軸設定 / サンプルレー	/ レコード長の関係	<u>†</u> -1
------	----------------	------------	-------------

付

1

2

3

4

5

1.1 フロントパネル・リアパネル

フロントパネル

1

リアパネル

1

1.2 操作キー / ノブ

垂直軸 / チャネル

CH1 ~ CH4 キー、LOGIC キー (4 チャネルモデル)

アナログ信号入力チャネルの表示の ON/OFF、垂直ポジション、カップリング、プロー ブの種類、オフセット電圧、帯域制限、垂直軸の拡大 / 縮小、リニアスケーリング、波 形ラベル名を設定するメニューが表示されます。また、SCALE ノブや POSITION ノブを 操作する前にこのキーを押すことにより、SCALE ノブの操作対象チャネルが選択されま す。SCALE ノブと POSITION ノブの間にある LED が、選択されているチャネルのシンボ ルカラー (CH キーの周りの色) と同じ色で光ります。各 CH キーは、そのチャネルの表 示が ON のときに点灯します。

LOGIC キーでは、ロジックチャネルの設定をします。CH4 またはロジックのどちらかが 使用できます。LOGIC キーを押すと CH4 がロジックに切り替わります。また、CH4 キー を押すと CH4 に切り替わります。CH4 または LOGIC のどちらか有効なキーが点灯します。

POSITION ノブ

電圧レンジを変更したときの中心位置を変更できます。このノブを回す前に CH1 ~ CH4(LOGIC)を押して、対象波形を選択しておきます。プッシュスイッチ付きのノブです。 ノブを押して設定を初期値 (0.0div) に戻すこともできます。LOGIC チャネルでも使用で きます。

SCALEノブ

垂直軸感度を設定できます。このノブを回す前に CH1 ~ CH4(LOGIC) を押して、対象波 形を選択しておきます。信号の取り込みストップ中に設定を変更した場合は、波形を垂 直方向に拡大縮小表示します。信号の取り込みを再スタートすると、変更した垂直軸感 度で信号を取り込みます。プッシュスイッチ付きのノブです。ノブを押して設定分解能 を切り替えられます。ノブを押して Fine を点灯させると設定分解能が細かくなります。 対象が LOGIC の場合は、垂直方向に波形を 3 段階で拡大できます。

水平軸

POSITION ノブ

時間軸レンジを変更したときの中心位置を変更できます。プッシュスイッチ付きのノブ です。ノブを押して設定を初期値 (50%) に戻すこともできます。

DELAY キー

DELAY キーを押すとキーが点灯し、POSITION ノブでトリガディレイを設定できます。 DELAY キーが点灯しているときに POSITION ノブを押すと、トリガディレイを初期値 (0s) に戻すこともできます。

TIME/DIV ノブ

時間軸スケールを設定します。信号の取り込みストップ中に設定を変更した場合、波形 を水平方向に拡大縮小表示します。信号の取り込みを再スタートすると、変更した時間 軸スケールで信号を取り込みます。

トリガ

EDGE キー

Edge トリガを設定するメニューが表示されます。また、このキーを押すと Edge トリガ が選択され、キーが点灯します。

ENHANCED キー

拡張トリガを設定するメニューが表示されます。また、このキーを押すと拡張トリガが 選択され、キーが点灯します。

MODE +-/ ACTION · GO/NO-GO (SHIFT+MODE) +-

トリガモードを選択するメニューが表示されます。SHIFT キーを押してから MODE キー を押すと、アクションオントリガまたは GO/NO-GO に関するメニューが表示されます。

B TRIG キー

Edge または Enhanced トリガとのコンビネーショントリガの設定と B トリガの種類が 設定ができます。

LEVELノブ

トリガレベルを設定できます。プッシュスイッチ付きのノブです。ノブを押すと。波形の振幅の中心(振幅の 50%)にトリガレベルを自動的に設定できます。

TRIG'D LED

トリガが成立した場合に点灯します。

波形の取り込み

信号の取り込み方法を設定するメニューが表示されます。

RUN/STOP キー

トリガモードに応じて、信号の取り込みをスタート / ストップします。信号の取り込み 中はキーが点灯します。

SINGLE キー

波形を1回取り込みます。Averageモードのときは、指定回数のリニアアベレージを行った波形を1回取り込みます。

ズーム / 検索 / シリアルバス

ZOOM 1 +-/ZOOM 2 +-

波形のズーム表示に関するメニューが表示されます。表示が ON の場合はキーが点灯します。ZOOM1 と ZOOM2 の両方が ON のときは、ZOOM ノブの対象になっているキーが明るく点灯します。

ZOOMノブ

ズーム表示時に、このノブを回すと対象となる水平軸の拡大率を指定できます。このノ ブを回す前に ZOOM1 または ZOOM2 のキー押して、ノブの対象に設定します。プッシュ スイッチ付きのノブです。ノブを押して設定分解能を切り替えられます。ノブを押して Fine を点灯させると設定分解能が細かくなります。

SEARCH キー

波形サーチ(検索)に関するメニューが表示されます。

SHIFT+SEARCH(SERIAL BUS) キー

SHIFT キーを押してから、SEARCH キーを押すとシリアルバスに関するメニューが表示 されます。

解析

CURSOR キー

カーソル測定をするときのメニューが表示されます。

MEASURE キー

波形パラメータの自動測定、統計処理をするときのメニューが表示されます。

ANALYSIS キー

波形のヒストグラム表示やオプションの電源解析に関するメニューが表示されます。

MATH/REF キー

波形演算を設定したり、リファレンス波形に関する設定をします。

SHIFT+MATH/REF(FFT) キー

SHIFT キーを押してから MATH/REF キーを押すと FFT に関するメニューが表示されます。

画面表示

DISPLAY キー

画面表示に関するメニューが表示されます。

SHIFT + DISPLAY(X-Y) キー

SHIFT キーを押してから DISPLAY キーを押すと、X-Y 表示に関するメニューが表示されます。

画面イメージの印刷 / データの保存 / ヒストリ波形 / その他

PRINT キー

画面イメージデータの印刷または保存を実行します。

SHIFT+PRINT(MENU) キー

画面イメージデータを内蔵プリンタ、USB プリンタへ印刷または、メディアに保存する ときのメニューが表示されます。プリンタでの印刷、メディアへの保存のどちらが設定 されているかが一目でわかるように、設定に合わせてインジケータが点灯します。

FILE キー

内部メモリ、USB メモリへ各種データを保存したり、保存したデータを読み出すとき、 またはファイル操作に関するメニューが表示されます。

UTILITY +-

キャリブレーション、ネットワーク、PC との接続方法、日付時刻、メニュー言語、メッ セージ言語、クリック音、セルフテスト、LCD のバックライト、オフセットキャンセル、 ディレイキャンセルに関するメニューが表示されます。

また、システム情報(オプションの有無、ファームウエアのバージョン)を表示します。

CLEAR TRACE キー

表示されている波形を消去します。波形の取り込み中にクリアトレースを実行すると、 それまでに取り込んだヒストリ波形をすべて削除し、波形取り込み回数1から波形を取 り込み直します。

SNAPSHOT +-

現在表示されている波形を画面に白色(初期設定)で残します。

HISTORY($\sqrt{2}$) +-

ヒストリメモリ波形の表示をしたり検索するときのメニューが表示されます。

AUTO SETUP キー

入力信号に応じた値に自動的に設定するオートセットアップを実行します。メニューには、UNDOが表示され、元に戻すことができます。

DEFAULT SETUP キー

各設定値を工場出荷時の値に戻します。メニューには、UNDO が表示され、元に戻すことができます。

PRINT

ヘルプ(?)キー

機能を解説するヘルプウィンドウの表示を ON/OFF します。

SHIFT +-

ー度押すとキーが点灯し、各キーの下に表記されている紫色の文字の機能が有効になり ます。もう一度押すとその状態が解除されます。

ファンクションキー (F1~F7)

画面に表示されるファンクションキーメニューで、項目を選択するときに使用します

ESC キー

ファンクションキーメニュー、ダイアログボックスを消去するとき、一階層上のメニュー に戻るときに使用します。

ジョグシャトル

各設定操作で、値の設定、カーソルの移動および項目の選択をするときに使用します。 シャトルリングを回すと、その角度に応じて変化量が変わります。

RESET(🍫) キー

数値入力を初期値(デフォルト値)に戻します。

SET(**O**) キー

キーを押すことにより、ジョグシャトルで選択したメニューの項目を確定できます。 また、ジョグシャトル設定メニューに2つの設定項目がある場合には、キー押すごとに ジョグシャトルの設定対象を変更できます。

キーを左右に傾けることにより、数値入力の桁(カーソル)が左右に移動します。 キーを上下に傾けることにより、数値を増減できます。また、ダイアログメニューの場 合には、キーを上下左右に傾けることにより、設定項目を変更できます。

ノブを操作するときの注意

SCALE ノブ、LEVEL ノブ、垂直軸 / 水平軸の各 POSITION ノブ、ZOOM の MAG ノブはプッ シュスイッチ付きのノブです。ノブを押すときはまっすぐに押してください。斜めに押 すと、ノブの動作が不安定になることがあります。ノブの動作が不安定になった場合は、 再度、ノブをまっすぐに押してください。

注 意

ノブには横方向に大きな力を掛けないでください。ノブが破損する恐れがありま す。

1.3 表示画面

通常のアナログ信号波形表示画面

Main : 125 k 1us/div ľ ビットごとの波形 ビットオーダーに従った順番で波形を表示

ズーム波形を表示しているときの画面

解析結果を表示しているときの画面

設定メニューが表示されていないときは、設定メニュー表示エリアに波形パラメータの 測定値やカーソル測定値が表示されます。

設定メニューの階層表示

上位階層の設定メニューが判別できるように、上位階層の設定メニュー名をタグ表示し ます。

	1 階層上位のメニュー (CH2) 2 階層上位のメニュー (Ref Level)						
MEASIRE	<u>ן א</u>						
Mode	 ▼114	CH2	Ref Levels	V Consinsion	T idnild	Timo Donan	Puch #*009
OFF ON	Mode	Distal	Mesial	Proximal	High Low	- 148317115	Distal
	🔏 Unit	90%	50%	10%	Auto		90%

2.1 使用上の注意

安全にご使用いただくための注意

初めてご使用になるときは、必ず viii ~ ix ページに記載の「本機器を安全にご使用いただくために」をお読みください。

ケースを外さないでください

本体のケースを外さないでください。内部には高電圧部があり、たいへん危険です。内 部の点検および調整は、お買い求め先にお申しつけください。

異常の場合には

本体から煙が出ていたり変な臭いがするなど、異常な状態になったときは、直ちに電源 スイッチを OFF にするとともに、電源コードをコンセントから抜いてください。異常な 状態になったときは、お買い求め先までご連絡ください。

電源コードについて

電源コードの上に物を載せたり、電源コードが発熱物に触れないように注意してください。また、電源コードの差し込みプラグをコンセントから抜くときは、コードを引っ張らずに必ずプラグを持って引き抜いてください。コードが傷んだらお買い求め先にご連絡ください。ご注文の際に必要な部品番号は、iv ページをご覧ください。

取り扱い上の一般的注意

上に物を置かないでください

本機器の上に、他の機器や水の入った容器などを置かないでください。故障の原因にな ります。

入力部へ衝撃を与えないでください

入力コネクタやプローブなどに衝撃を与えると、電気的なノイズに変換されて信号が入 力されることがあります。

液晶画面を傷つけないでください

画面の液晶ディスプレイは非常に傷つきやすいので、先のとがったもので表面を傷つけ ないように注意してください。また、絶対に振動や衝撃を与えないでください。

長時間使用しないときには

電源コードをコンセントから抜いておいてください。

持ち運ぶときは

まず、電源コードと接続ケーブルを外してください。持ち運ぶときは、下図のようにハ ンドルを持つか、両手で持って、慎重に移動してください。

- ハンドルを持つときや格納するときは、ハンドルとケースの間に手を挟まないように注意してください。
- ・ 持ち運ぶときは、壁や設置面に手を挟まないように注意してください。

汚れを取るときには

ケースや操作パネルの汚れを取るときは、電源コードをコンセントから抜き、柔らかく 乾いたきれいな布で軽く拭き取ってください。ベンジンやシンナーなどの薬品を使用し ないでください。変色や変形の原因になります。

2

2.2 本機器を設置する

- ・ 屋外、または雨や水にあたる場所に本機器を設置しないでください。
- 本機器が異常または危険な状態になったときに、直ちに電源コードを外せるように設置してください。

本機器の左側面の吸気口および背面の排気口をふさぐと機器が高温になり破損す る恐れがあります。

設置条件

次の条件に合う場所に設置してください。

平坦で水平な場所

正しい向きで、安定な場所に、左右前後とも水平を保って設置してください。不安定な 場所や傾いた場所に設置すると、プリンタの記録品質が悪くなることがあります。

風通しのよい場所

本機器の左側面には吸気口があります。また、背面には冷却用ファンの排気口がありま す。内部の温度上昇を防ぐため、下図に従って周囲に十分なスペースをとり、これらの 排気口および吸気口をふさがないようにしてください。

各種ケーブルを接続するときは、上図のスペースの他に、操作に必要な十分なスペース をとってください。

2.2 本機器を設置する

周囲温度および周囲湿度

次の環境下で使用してください。

周囲温度	5 ~ 40°C
周囲湿度	20 ~ 80% RH(プリンタ未使用時) 、ただし結露のないこと
	35 ~ 80% RH(プリンタ使用時)、ただし結露のないこと

Note_

- ・ 精度のよい測定を行いたいときは、23 ± 5℃、55 ± 10% RH で使用してください。
- ・ 温度、湿度の低い場所から高い場所に移動したり、急激な温度変化があると、結露するこ とがあります。このようなときは、周囲の温度に1時間以上慣らしてから使用してください。

次のような場所には設置しないでください。

- 直射日光の当たる場所や熱発生源の近く
- ・ 油煙、湯気、ほこり、腐食性ガスなどの多い場所
- ・ 強電磁界発生源の近く
- 高電圧機器や動力線の近く
- ・ 機械的振動の多い場所
- 不安定な場所
- ・ 屋外、または雨や水にあたる場所

設置姿勢

- ・ 下図のように、水平な場所に水平に設置してください。
- ・ 滑りやすい所に設置するときは、滑り防止のため、付属品の底面脚用ゴム(4個)を本 機器底面の脚に取り付けてください。

危険防止のため、上図以外の姿勢では設置しないでください。また重ね置きはし ないでください。

2.3 電源を接続する

電源を接続する前に

電源を接続する前に、次の警告をお守りください。感電の危険や機器を損傷する恐れが あります。

- ・ 感電や火災防止のため、電源コードおよび3極-2極変換アダプタ(日本国内でのみ使用可)は必ず当社が供給した本機器用のものをご使用ください。
- ・ 感電防止のため必ず保護接地をしてください。本機器の電源コードは保護接地 端子のある3極電源コンセントに接続してください。やむを得ず、2極電源コ ンセントに接続するときは、付属の3極-2極変換アダプタ(日本国内でのみ使 用可)を使用して、電源コンセントの保護接地端子に変換アダプタの接地線を 確実に接続してください。
- 保護接地線のない延長用コードは使用しないでください。保護動作が無効になります。
- ・ 付属の電源コードに適合した電源コンセントを使用できず、保護接地ができな い場合は、本機器を使用しないでください。

電源コードの接続

- 1. リアパネルにある主電源スイッチが OFF であることを確認します。
- 2. リアパネルの電源コネクタに、電源コードのプラグを接続します。
- 3. 次の条件を満たす電源コンセントに、電源コードのもう一方のプラグを接続します。電源コンセントは保護接地端子を備えた3極コンセントを使用してください。やむを得ず2極コンセントを使用するときは、付属品の3極-2極変換アダプタ(日本国内でのみ使用可)を使用して、アダプタから出ている緑色の接地線を必ず電源コンセントの保護接地端子に接続してください。

項日	
定格電源電圧 *	$100 \sim 240 \mathrm{VAC}$
電源電圧変動許容範囲	$90\sim 264 { m VAC}$
定格電源周波数	50/60Hz
電源周波数変動範囲	$48\sim 63 { m Hz}$
最大消費電力	約 170VA MAX

TAL

本機器は、100V系と200V系のどちらの電源電圧でも使用できます。電源コードは、種類によって最大定格電圧が異なります。本機器に供給される電源電圧が、付属の電源コードの最大定格電圧(iiiページ参照)以下であることを確認のうえ、ご使用ください。

電源スイッチの ON

電源スイッチを ON にする前に確認すること

- ・ 本機器が正しく設置されているか: 「2.2 本機器を設置する」参照
- ・ 電源コードが正しく接続されているか: 前ページ参照

主電源スイッチの ON

 リアパネルにある主電源スイッチを「ON(|)」側に倒します。 フロントパネルの電源スイッチが橙色に点灯します。

電源スイッチの ON

フロントパネルにある電源スイッチを押します。
 電源スイッチが橙色から緑色に変わります。

Note

フロントパネルの電源スイッチが ON のまま (電源スイッチが緑色で点灯中)主電源スイッチ を OFF にすると、次に電源を入れる場合、主電源スイッチを ON にするだけで本機器を起動で きます。ただし、フロントパネルの電源スイッチが ON のまま主電源スイッチを OFF にすると、 OFF にする直前の設定情報が正しく記憶されません。

電源 ON 時の動作

電源スイッチを ON にすると、自動的にセルフテストとキャリブレーションが開始され ます。正常に起動すると波形表示画面になります。本機器が正常に起動したことを確認 してから本機器を使用してください。

電源 ON 時に正常に起動しない場合

電源スイッチを OFF にしてから、次のことを確認してください。

- ・ 電源コードが確実に接続されているか
- ・ 電源コンセントに正しい電圧が来ているか→ 2-5 ページをご覧ください。
- ・ RESET キーを押しながら電源スイッチを ON にして、設定内容を工場出荷時の状態 に戻す。

確認後に電源スイッチを ON にしても変わらない場合は、お買い求め先まで修理をお 申しつけください。

Note_

- ・ 電源スイッチを OFF にしてから ON にするときは、10 秒以上間隔をあけてください。
- ・ 起動画面が表示されるまで数秒かかることがあります。

電源スイッチの OFF

注 意

データ保存中や内蔵プリンタでプリント中にいきなり主電源スイッチを OFF にしたり、電源コードを抜くと、保存先のメディアや内蔵プリンタが故障する恐れがあります。また、保存中のデータは保障されません。主電源スイッチは、データの保存が終了してから、OFF にしてください。

電源スイッチの OFF

1. フロントパネルにある電源スイッチを押します。

主電源スイッチの OFF

フロントパネルの電源スイッチの点灯色が緑色から橙色に変わったことを確認してから、リアパネルにある主電源スイッチを「OFF(○)」側に倒します。

電源 OFF 時の動作

電源スイッチを OFF にする直前の設定が記憶されます。したがって、次に電源スイッチ を ON にすると、OFF にする直前の設定で測定が行われます。

Note_

フロントパネルにある電源スイッチが ON の状態で、リアパネルにある主電源スイッチを OFF にした場合、OFF にする直前の設定情報が正しく記憶されません。次に主電源スイッチを ON にすると自動的にフロントパネルの電源スイッチが ON になり、以前正しく記憶された設定で 起動します。このとき、画面にメッセージが表示されますが故障ではありません。電源を OFF する場合は、フロントパネルの電源スイッチを OFF し、次にリアパネルの主電源スイッチを OFF するようにしてください。

精度のよい測定を行うには

- ・ 電源スイッチを ON にしてから、30 分以上のウォームアップをしてください。
- ウォームアップ後、キャリブレーションをしてください。
- オートキャリブレーションを ON に設定している場合は、電源を ON にしてから次の時間経過後、下記の操作をしたとき、自動的にキャリブレーションが実行されます。
 3 分後、10 分後、30 分後、1 時間後、これ以降は1時間ごと
 - ・ 波形の取り込み中(RUN/STOP キーが点灯)に、TIME/DIV を変更したとき
 - ・ 波形の取り込み停止 (RUN/STOP キーが消灯) から、波形取り込みを実行したとき

信号を入力した状態でキャリブレーションが実行されたときは、信号を入力しない状態 でキャリブレーションし直すことをおすすめします。

2.4 プローブを接続する

- す。これを超える電圧を加えると、入力部が損傷する恐れがあります。周波数が1kHzを超えるときは、この電圧以下でも損傷することがあります。
- ・ 50 Ω入力の場合の最大入力電圧は、5Vrms または 10Vpeak です。これらのどちらかでも超える電圧を加えると、入力部が損傷する恐れがあります。
- プローブの取り扱いについては、プローブに付属されている取扱説明書をご覧 ください。

プローブの接続

プローブ (または BNC ケーブルなどの測定入力ケーブル)は、フロントパネル下部に ある入力端子に接続してください。本機器の入力インピーダンスは、1MΩ±1.0%と約 20pF の並列、または 50Ω±1.0%です。

接続時の注意

- プローブを初めて接続するときは、「2.5 プローブを位相補正する」に従って、必ず プローブの位相補正をしてください。補正しないと、平坦な周波数特性が得られない ため、正しい測定ができません。プローブを接続するチャネルごとに、プローブを位 相補正してください。
- ・プローブを使用しないで被測定回路に直接接続する場合は、本機器の入力インピーダンスの影響により、正しい測定ができないことがあります。ご注意ください。

プローブについて

標準付属品のプローブ (形名:701938/701939) の仕様、プローブ位相補正後

詳細は、プローブに添付されている取扱説明書をご覧ください。

項目	仕様
プローブ全長	701938:1.5 m
	701939:1.3 m
入力抵抗	$10M\Omega\pm 2\%$
入力容量	701938:約 13pF
	701939:約 10.5pF
減衰比	$10:1 \pm 2\%$
帯域幅	701938:DC ~ 200MHz(- 3dB 以内)
	701939:DC ~ 500MHz(- 3dB 以内)
立ち上がり時間	701938:1.75ns 以内 (Typical 値 *)
	701939:700ps 以内 (Typical 値 *)
最大入力電圧	600V(DC+ACpeak) または 424Vrms

* Typical 値は代表的または平均的な値です。厳密に保証するものではありません。

オプションのプローブ (形名:701946)の仕様、プローブ位相補正後

詳細は、プローブに添付されている取扱説明書をご覧ください。

オプションの /EX22、/EX24、/EX52、/EX54 の場合は、ミニチュアパッシブプローブ 701946 が付属されます。

項目	仕様
プローブ全長	1.3 m
入力抵抗	$10M\Omega \pm 1\%$
入力容量	約 9.5pF
減衰比	$10:1 \pm 2\%$
帯域幅	DC ~ 500MHz(- 3dB 以内)
立ち上がり時間	700ps 以内 (Typical 値 *)
最大入力電圧	400Vrms

* Typical 値は代表的または平均的な値です。厳密に保証するものではありません。

付属品以外の電圧プローブを使う場合の注意

- ・ 500MHz に近い周波数を含む信号を測定するときは、周波数帯域が 500MHz 以上ある ものを使用してください。
- ・ 減衰比が正しく設定されていないと、正しい測定ができません。ご使用になるプロー ブの減衰比をご確認いただき、正しく設定してください。

プローブの減衰比 / 電圧 - 電流換算比の設定

プローブインタフェース端子に対応していないプローブを使用する場合は、プローブの 減衰比 / 電圧 - 電流換算比に合わせて、本機器の減衰比 / 電圧 - 電流換算比を設定して ください。設定が合っていないと、正しい測定値を表示できません。

プローブインタフェース端子に対応したプローブの接続

- プローブインタフェース端子に対応したプローブ*を本機器に接続すると、自動的に プローブの種類が認識され、減衰比が設定されます。また、プローブインタフェース からプローブに電源が供給されるため、プローブの電源ケーブルをプローブパワー端 子に接続する必要がありません。
- プローブインタフェース端子に対応した電流プローブの場合、自動ゼロ補正ができます。
 - * 対応しているプローブについては、viページの「アクセサリ」をご覧ください。

FET プローブ、電流プローブ、差動プローブ、デスキュー調整信号源の接続

当社製の FET プローブ*、電流プローブ*、差動プローブ*、またはデスキュー調整信号 源*を使う場合、電源として本機器のリアパネルにあるプローブパワー端子(オプション) をご使用ください。接続方法についての詳細は、各製品に添付されている取扱説明書を ご覧ください。

* プローブや信号源の形名については、viページの「アクセサリ」をご覧ください。

注 意

本機器のリアパネルにあるプローブパワー端子(オプション)を、FET プローブ、 電流プローブ、差動プローブ、またはデスキュー調整信号源の電源以外の目的で使 用しないでください。また、4つのプローブパワー端子と4つのプローブインタ フェース端子の±12V それぞれの合計電流が1.2A を超えないように使用してくだ さい。本機器またはプローブパワー端子に接続した機器を損傷する恐れがありま す。

プローブインタフェース端子とプローブパワー端子の使用上の注意

リアパネルのプローブパワー端子(オプション)にFET プローブ、電流プローブ、差動 プローブ、またはデスキュー調整信号源を接続する場合、4つのプローブパワー端子と 4つのプローブインタフェース端子の±12V それぞれの合計電流が1.2A を超えないよう に使用してください。本機器の電源の過電流保護回路の動作により、本機器の動作が不 安定になる可能性があります。

電流プローブを使用する場合、被測定電流(電流プローブで測定する電流)によって
 使用可能な本数が制限されます。本機器に接続できるアクティブプローブの被測定電
 流ー消費電流特性を下記に示します。

701928電流プローブの被測定電流値と消費電流(特性例)

FET プローブ 700939、差動プローブ 700924、700925、701920、701921、701922、701926の消費電流は、正負ともに最大 125mA、差動プローブ 701927の消費電流は、正負ともに最大 50mA として計算してください。

2.5 プローブを位相補正する

ブローブを使用して測定する場合には、最初に必ずプローブを位相補正してからお使い ください。

プローブ補償調整用信号出力端子に外部から電圧を印加しないでください。内部 回路を損傷する恐れがあります。

操作

- 1. 電源スイッチを ON にします。
- 2. プローブを測定入力端子(実際に測定信号を入力する端子)に接続します。
- **3.** プローブの先端を本機器のフロントパネルのプローブ補償調整用信号出力端子 に接続し、アース線を機能接地端子に接続します。
- 4. 「3.5 オートセットアップをする」の操作に従って、オートセットアップします。
- 5. 位相調整用穴にドライバを差し込み、可変コンデンサを回して、表示波形を正しい方形波にします。

プローブの位相補正の必要性

プローブは、使用されるオシロスコープの入力容量にほぼ合うように位相補正されてい ます。しかし、個々のオシロスコープの各入力チャネルの入力抵抗や入力容量にはバラ ツキがあるため、低周波信号と高周波信号での分圧比が合わなくなり、平坦な周波数特 性が得られなくなります。

プローブには高周波信号での分圧比調整用可変コンデンサ(トリマ)が付いています。 平坦な周波数特性を得るようにこのトリマを調整して位相補正します。

初めて使用するプローブは、必ずこの位相補正をしてください。

入力容量値がチャネルごとに異なるので、接続するチャネルを変えるときにも、必ずこ の位相補正をする必要があります。

位相補正用信号

プローブ補償調整用信号出力端子から、次の方形波信号を出力します。 周波数:約1kHz 振幅: 約1V

プローブの位相補正による波形の違い

正しい波形

過補償(高周波数領域の

補償不足(高周波数領域の 利得が下がっている)

	1			_		
				I		

Ŧ	钊得	が	上九	がっ	てい	いる	5)	

				٦	_	 _

_			_			
	'	_			-	

2.6 ロジックプローブを接続する

- ・ 測定対象を本機器に接続する場合は、必ず測定対象の電源を OFF にしてください。
- ・ 最大入力電圧を超えた過大入力電圧を入力しないでください。
- ・ 感電を防ぐために、本体の保護接地を必ず取ってください。また、プローブや 入力コネクタのグランドを測定対象の接地電位に接続してください。

注 意

- ロジックプローブ入力の最大入力電圧は、701980、701981、701989 では± 40V(DC + ACpeak) または 28Vrms、701988 では± 42V(DC + ACpeak) または 29Vrms です。これらのどちらかでも超える電圧を加えると、ロジックプローブ および本機器を損傷する恐れがあります。周波数が高いときは、この電圧以下 でも損傷することがあります。周波数によるディレーティングについては、各 ロジックプローブの取扱説明書をご覧ください。
- 1つのポートの8本の入力ラインはグランド共通です。また、本機器のグランドと各ポートのグランドは共通です。コモン電圧の異なる入力は接続しないでください。本機器本体、ロジックプローブまたは接続している機器を損傷する恐れがあります。
- ・ ロジックプローブ 701980、701981 のケーブルを本機器に接続するとき、また は取り外すときは、本機器の電源スイッチを OFF にしてください。
- ロジックプローブの取り扱いについては、ロジックプローブに付属されている 取扱説明書をご覧ください。

ロジック信号入力ポート

ロジックプローブ (701980/701981/701988/701989) は、フロントパネルにあるロジック 信号入力ポートに接続してください。

ロジックプローブについて

ロジックプローブ (701980/701981/701988/701989) は、本機器のロジック信号入力ポートに接続するためのプローブです。測定点の接続には、ご使用のプローブに適用した接続リードを使用してください。また、接続リードの改造はしないでください。仕様を満足しなくなることがあります。

1つのポート当たり8本のロジック入力端子があります。スレショルドレベルは、本機器のメニューで選択できます。

推奨プローブ:701988、701989(本機器の電源スイッチが ON のときでも接続可) 使用可能なプローブ:701980、701981(本機器の電源スイッチが OFF のときに接続可)

本機器で使用する場合のロジック入力仕様

701988、701989の仕様は以下のとおりです。詳細は 5-3 ページをご覧ください。

項目	701988 使用時	701989 使用時
最大トグル周波数*1	100MHz	250MHz
入力点数	8	3
最大入力電圧*2	± 42V(DC + ACpeak) または 29Vrms	± 40V(DC + ACpeak) または 28Vrms
入力レンジ	± 40V	±6V(スレショルドレベル中心)
最高サンプルレート	1.25GS/s(インタ!	ノーブモード OFF)
スレショルドレベル	± 40V(設定分解能 0.05V)	± 6V(設定分解能 0.05V)
スレショルド確度 ^{*1}	± (100mV +	-設定の 3%)
最小入力電圧*1	500mVp-p	300mVp-p
入力インピーダンス	約1MΩ、約10pF(Typical) ^{*3}	約 100kΩ、約 3pF(Typical) ^{*3}
スレショルドレベル	CMOS(5V) = 2.5V, CMOS(3.3V)	= 1.65V, CMOS(2.5V) $= 1.25V$,
のプリセット値	CMOS(1.8V) = 0.1	9V, ECL = -1.3V

*1 基準動作状態 (5.11 節参照) でウォームアップ時間経過後

*2 周波数が 1kHz 以下のとき

*3 typical 値は代表的または平均的な値です。その値を保証するものではありません。

2.7 パネルシートを取り付ける

仕様の言語コードの設定に従って製品に付属されているフロントパネルシートを、必要 に応じて取り付けます。パネルシートは、工場出荷時に貼られているパネルシートの上 から取り付けます。

操作

パネルシート固定用フックはフロントパネルの上側に2つ、下側に2つ、POSITION / ブ (HORIZONTAL) と ZOOM ノブの下にそれそれ1つあります。 上側2つのフックの内側に、取り付けるパネルシートを差し込みます。 パネルシートを少したわませて、下側2つのフックに差し込みます。 POSITION ノブ (HORIZONTAL) と ZOOM ノブの周辺を押さえて、それぞれのノブの下に あるフックに差し込みます。

2.8 内蔵プリンタ(オプション)にロール紙を取り付ける

ここでは、内蔵プリンタ(オプション)にロール紙を取り付ける方法について説明して います。

プリンタ用ロール紙

当社専用のロール紙を使います。これ以外の紙は使用しないでください。初めてお使い になるときは、付属品を使用してください。ロール紙がなくなったときは、お買い求め 先か、当社支社・支店・営業所までご注文ください。

部品番号: B9988AE 仕様: 感熱紙、10m 販売単位: 10 巻

ロール紙の取り扱い

このロール紙は、熱化学反応で発色する感熱紙です。次の点にご注意ください。

保存上の注意

使用する感熱紙は、70℃くらいから徐々に発色します。未使用、記録済みを問わず、熱・ 湿気・光・薬品などの影響を受けますので、次の点に注意する必要があります。

- ・ 乾燥した冷暗所に保管してください。
- ・ 開封後は、できるだけ早くお使いください。
- 可塑剤を含んだプラスチックフィルム(塩化ビニル製フィルム、セロハンテープなど) を長期間接触させると、可塑剤の影響で記録部が退色します。たとえば、ホルダーに 入れて保存するときは、ポリプロピレン製のホルダーをご使用ください。
- 記録紙を糊付けするときは、アルコール、エーテルなどの有機溶剤の入った糊は使用しないでください。発色の原因になります。
- 長期にわたって保存する場合は、コピーをとることをおすすめします。感熱紙の性質
 上、記録部が退色する可能性があります。

使用上の注意

- ・ ロール紙は、当社が供給する純正品を必ずご使用ください。
- ・ 汗ばんだ手で触れると、指紋が付いたり記録がぼけたりすることがあります。
- ・ 表面を固いもので強くこすると、摩擦熱で発色することがあります。
- ・ 薬品・油などが接触すると、発色したり記録が消えたりすることがあります。

3.1 キー / ジョグシャトルの操作と働き

キー操作

操作キーを押して表示される設定メニューの操作方法

キーによって、キーを押した後の動作が次のように異なります。

DISPLAY メニュー

CURSOR メニュー

FF	ON	₩4T&AV	CH1	item betup	2.92div -4	.00div .00div	Ľ	-3.00div	
Displa	lay	Туре	Trace	tom Sotup	V Cursor1/2 🎞 T Cur	sor1/2	0	2.92div Cursor2 ::::	
CURSO	SOR	1					PI C	Cursor1 :::	
CURSO	SOR	ļ						Pt C	

MODE メニュー

	MODE				Pueb 10 000e	1
ļ	Auto	Auto Level	Normal	N Single	Holdoff	-
1						

MATH/REF メニュー

F

MATH/REF							Center
1: CH1xCH2	Mode	Operation	Source1	Source2	▼Label/Unit	Ranging	Sensitivity
2: 0FF	Math1	S1 x S2	CH1	CH2	Math1	Auto Manual	2.000V
Ġ							

- A: 対応するソフトキーを押すと、選択メニューが表示されます。 各選択肢に対応するソフトキーを押して設定します。
- B: 対応するソフトキーを押すと、関連する設定メニューが表示されます。
- **C**: 対応するソフトキーを押すごとに、選択項目が切り替わります。
- D: ソフトキーを押すと、ダイアログボックスまたはキーボードが表示されます。 ジョグシャトルと SET キー(○)を使って設定します。
- E: ジョグシャトルの対象になります。設定メニューの右端に表示されるジョグシャトル設定メニューが、選択した設定項目になります。設定項目によっては SET キーで桁を移動して数値を設定することもできます。

- **F**: 押したキーの内容が設定されます。
- G: 演算の MATH1 と MATH2 のように、2 つの異なる設定内容で動作する機能を設定 する場合に、どちらを設定するかを選択します。

操作キー下側にある紫色文字の設定メニューの表示方法

本書の説明文では、「SHIFT +操作キー名 (紫色文字)」という用語で、次の操作を示しています。

- SHIFT キーを押します。SHIFT キーが点灯して、シフト状態になります。 操作キー下側にある紫色文字の設定メニューが選択できるようになります。
- 2. 表示させたい設定メニューの操作キーを押します。

ESC キーの操作

- ・ 設定メニューや選択肢が表示されているときに ESC キーを押すと、一階層上のメ ニューに戻ります。
- ・ 最上位の設定メニューが表示されているときに ESC キーを押すと、次のように表示 が変わります。

ESC キーを 押す操作	測定値が表示されているとき	測定値が表示されていないとき
1回目	設定メニュー	ーが消えます。
2回目	測定値が波形エリア外に移動します。	ジョグシャトル設定メニューが消えます。
3 回目	ジョグシャトル設定メニューが消えます。	
	以降、ESC キーを押すたびに測定値の 表示位置が波形エリア外とエリア内に	以降、変わりません。
	交互に切り替わります。	

RESET キー (**り**)、SET キー (**0**) を使っての数値入力

ジョグシャトルで数値を設定する場合、ジョグシャトル設定メニューに RESET キーマー クまたは SET キーマークが表示されます。

・ RESET キーマーク

RESET キーマークが表示されているときは、RESET キーを押すと初期値に設定されます (動作状況によっては戻らない場合もあります)。初期値は RESET キーマークの横 に表示されます。

・ SET キーマーク

設定する数値が2つある場合は、SETキーマークが表示されます。SETキーを押して、 どちらかの数値をジョグシャトルの対象にします。ジョグシャトルの対象数値の前に ジョグシャトルのマークが大きくなります。

RESET キーマークが表示されているときと同様に、ここで RESET キーを押すと初期値 に設定されます。

設定ダイアログボックスの操作方法

1. キー操作で、設定ダイアログボックスを表示します。

- *2. ジョグシャトル*または SET キー (●)を上下左右に動かして、設定したい項目に カーソルを移動します。
- 3. SET +− (○)を押します。設定項目によって以下のように動作が異なります。
 ・設定メニューを表示する
 - ・ チェックボックスをチェックする / チェックを外す
 - ・ カーソル位置の項目に設定する

設定ダイアログボックスの表示を消す方法

ESC キーを押します。設定ダイアログボックスが画面から消えます。

スクロール操作

画面に上下または左右のスクロールバーが表示されている場合は、SET キーを上下また は左右に傾けて、スクロール操作ができます。

3.2 数値 / 文字列を入力する

数値の入力

専用ノブによるダイレクト入力

次に示す専用ノブは、ノブを回すことにより、直接数値を設定できます。

- ・ POSITION ノブ (VERTICAL、HORIZONTAL)
- ・ SCALE ノブ (VERTICAL)
- ・ TIME/DIV ノブ
- ・ LEVEL ノブ (TRIGGER)
- ZOOM の拡大率用ノブ

ジョグシャトルによる入力

ソフトキーで設定項目を選んだあと、ジョグシャトルと SET キーで数値を変更します。 本書の操作説明では、「ジョグシャトル」という用語だけで、この操作を示している場 合があります。

Note -

ジョグシャトルで設定できる項目は、RESET キーを押すと初期値に戻せます。

文字列の入力

ファイル名やコメントなどは、画面に表示されるキーボードで入力します。ジョグシャトル、SET キーでキーボードを操作して、文字列を入力します。

キーボードの操作方法

- 7. キーボードを表示させた状態で、ジョグシャトルを使って入力したい文字にカー ソルを移動します。SET キーを左右上下に動かしてもカーソルを移動できます。
- 2. SET キーをまっすぐに押すと、文字が決定されます。
 - ・ 文字列がすでに入力されている場合は、矢印のソフトキーで文字挿入位置にカーソルを 移動します。
 - ・ 大文字と小文字は、**CAPS**のソフトキーで切り替えます。
 - ・ひとつ前の文字を削除するときは、BSのソフトキーを使います。
 - ・入力したすべての文字列を削除するときは、CLEARのソフトキーを使います。
- 3. 操作1~2を繰り返して、すべての文字を決定します。
 キーボードの ●を選択すると、以前に入力した文字列の一覧が表示されます。
 ジョグシャトルで文字列を選択しSETキーを押すと、選択した文字列が入力されます。
- 4. ENTER のソフトキーを押すか、キーボードの ENTER にカーソルを移動して SET キーをまっすぐに押すと、文字列が確定し、キーボードが消えます。

Note.

- ・ @は、連続して2個以上入力できません。
- ファイル名の場合、大文字と小文字の区別はありません。コメントの場合は区別します。
 また、MS-DOSの制限により、次のファイル名は使用できません。
 AUX、CON、PRN、NUL、CLOCK、COM1 ~ COM9、LPT1 ~ LPT9

3.3 USB キーボード /USB マウスで操作する

USB キーボードの接続

USB キーボードを接続し、ファイル名やコメントなどを入力できます。

使用可能なキーボード

USB Human Interface Devices (HID) Class Ver1.1 準拠の次のキーボードが使用可能です。

- USB キーボードの言語が英語の場合 :
 - 104 キーボード
- USB キーボードの言語が日本語の場合 : 109 キーボード

Note_

- ・ 使用可能なキーボード以外は、接続しないでください。
- ・ USB ハブやマウスコネクタが付いている USB キーボードの動作は保証しません。
- 動作の確認されている USB キーボードは、お買い求め先か、当社 CS センターにお問い合わせください。

周辺機器接続用 USB コネクタ

USB キーボードは、フロントパネルまたはリアパネルの周辺機器接続用 USB コネクタに 接続します。

接続方法

本機器に USB キーボードを接続するときは、USB ケーブルで直接接続してください。本 機器の電源スイッチの ON/OFF にかかわらず、USB ケーブルは脱着可能です(ホットプ ラグ対応)。USB ケーブルのタイプ A コネクタを本機器に、タイプ B コネクタをキーボー ドに接続します。電源スイッチが ON のときには、接続後、約6秒後にキーボードを認 識して使用可能になります。

Note_

- 周辺機器接続用 USB コネクタには、使用可能な USB キーボード、USB マウス、USB プリン タ、USB ストレージ以外の USB 機器を接続しないでください。
- キーボードは複数台接続しないでください。キーボード、マウス、プリンタそれぞれ1台 づつ接続が可能です。
- 複数の USB 機器を続けて抜き差ししないでください。ひとつの USB 機器を抜き差ししてから次の USB 機器を抜き差しするまで、10 秒以上間隔を空けてください。
- 本機器の電源を投入してからキー操作が可能になるまでの間(約20秒)は、USBケーブルを抜かないでください。

ファイル名やコメントなどの入力

本機器の画面上にキーボードが表示されているときに、ファイル名やコメントなどを USB キーボードから入力できます。

USB マウスからの操作

USB マウスを接続して、本機器のキー操作と同様の操作ができます。また、メニュー画 面の選択したい項目にマウスのポインタを移動して、クリックすると、メニュー画面に 対応したソフトキーを押したり、SET キーを押したのと同様の操作ができます。

周辺機器接続用 USB コネクタ

USB マウスは、本機器のフロントパネルまたはリアパネルの周辺機器接続用 USB コネクタに接続します。

使用可能な USB マウス

使用可能な USB マウスは、USB HID Class Ver.1.1 対応の (ホイール付き) マウスです。

Note.

• 動作の確認されている USB マウスについては、お買い求め先か、当社 CS センターにお問い合わせください。

・ ホイールの付いていないマウスでは、設定できない項目があります。

接続方法

本機器に USB マウスを接続するときは、周辺機器接続用 USB コネクタに接続してください。本機器の電源スイッチの ON/OFF にかかわらず、USB マウスのコネクタは抜き差し可能です(ホットプラグ対応)。電源スイッチが ON のときには、接続後、約6秒後にマウスを認識して、ポインタ())が表示されます。

Note_

- 周辺機器接続用 USB コネクタには、使用可能な USB キーボード、USB マウス、USB プリンタ、USB ストレージ以外の USB 機器を接続しないでください。
- 周辺機器接続用 USB コネクタは 2 つありますが、両方のコネクタにマウスを接続しないでください。

USB マウスの操作方法

- フロントパネルの各キーと同様の操作(トップメニュー)
 - **トップメニューの表示** 画面上で右クリックします。本機器のフロントパネルの各キーがトップメニューとし て表示されます。

トップメニューでの項目の選択

選択したい項目にポインタを移動して、左クリックします。選択した項目に対応した 設定メニューが画面下側に表示されます。トップメニューは画面から消えます。 サブメニューのある項目の場合は、項目にポインタを移動すると、サブメニューが表 示されます。サブメニューでも、トップメニューと同様に、選択したい項目にポイン タを移動して、左クリックします。

Note_

次の各キーについては、トップメニューに表示されません。

ESC、RESET、SET

・ 設定メニューの操作(ソフトキーと同様の操作)

設定メニュー上の項目の選択

設定メニュー上の選択したい項目にポインタを移動して、左クリックします。 項目選択で、さらに、選択メニューが表示される場合は、選択したい項目の枠内にポ インタを移動して、左クリックします。 選択した項目で、ON、OFF などの選択項目が表示される場合は、その項目の枠内に

ポインタを移動して、左クリックします。この操作で項目が切り替わります。 ジョグシャトルと SET キーで項目を選択するメニューの場合は、設定したい項目にポ インタを移動して、左クリックすると設定が確定して、選択ダイアログボックスが閉

じます。

この枠内で左クリックすると、選択メニューが表示されます。

選択したい項目にポインタを移動して左クリックすると、選択が確定されます。

この枠内で左クリックすると、クリックするごとに選択される項目が切り替わります。

C	DISPLAY								Push O :Toggle
ľ	Format	Dot Connect	 Graticule 	Scale	Value	▼ Manning	▼ Color	Accumulate	
7	🖯 Dual	∕→ Sine	🎟 Dot Grid	OFF	ON	1. Indebining	00101	M Intensity	o Accuin Thie 100ms

メニュー画面の消去

- メニュー画面以外にポインタを移動して、左クリックします。
- 数値の設定
 - ◎のアイコンがあるメニュー項目では、次のように数値を設定できます。
 - ⑦のアイコンが1つのメニュー項目に2つあるときは、左クリックを繰り返すことでどちらかの設定項目を選択できます。
 - ・ 下方向にマウスホイールを回すと、値が大きくなります。
 - ・ 上方向にマウスホイールを回すと、値が小さくなります。
 - ・数値の上にポインタを移動して、ポインタの表示を にし、左クリックすると、 値を上げることができます。
 - ・ 数値の下にポインタを移動して、ポインタの表示を ➤ にし、左クリックすると、 値を下げることができます。
 - 数値の設定桁を移動する場合は、設定桁を移動したい数値の左右にポインタを移動して、ポインタの表示を、、または、にし、左クリックします。左クリックするごとに設定桁が1つずつ左または右に移動します。
 - ・ 設定した数値を初期値に戻す場合は、対象メニュー項目上で右クリックします。

- 0	Urdor1 '
	-4.00div
O	Irsor2 11
	3.84div

```
この範囲で左クリックすると、ジョグシャトルの対象を切り替えられます。
```

・ ダイアログボックス上でのトグルボックスの項目の選択

選択したい項目の上にポインタを移動して、左クリックします。選択した項目が選択 状態になります。選択されている項目の上で左クリックすると、非選択になります。

ſ		ltem Se		
	□ <u>ullu</u> Peak □ <u>ullu</u> Mean □ ulluInteg±σ □ <u>ullu</u> Integ±σ	Max Δ Max σ Max σ Δ Max σ Max σ Δ Max σ Δ Max σ Δ Max σ Δ Max σ Δ Max σ Δ Max σ	□Min □Median □Integ±3σ □4C	ー 選択したい項目の上にポインタ を移動して、左クリックします。
- 1				

Note .

ダイアログボックスを閉じる場合は、ダイアログボックス以外の位置にポインタを移動して、 左クリックします。 ・ファイルリストウィンドウでのファイル / ディレクトリ / メディアドライブの選択

選択したいファイル / ディレクトリ / メディアドライブ名にポインタを移動して、左 クリックすると、選択されます。

マウスホイールを回すとファイルリストがスクロールされます。

選択をキャンセルする場合は、ファイルリストウィンドウ以外の位置にポインタを移動して、左クリックします。選択がキャンセルされるのと同時に、ファイルリストが 閉じます。

	eservenen energenenen	elendroit an	File List		38	
Pari	h : Flash_ivlem					
idur	n Of Files : 14		100200			
	0 + T	Fileitame	▲ Size	Date	Attr 🕑	
	Sort To	🖓 Flach Mom				
Iſ		E 000 csv	755	2009/01/21 13:43:14	r/w	
Ī	Filtor * *	E 000. ipg	168K	2009/02/04 09:44:58	r/w	
		2 001. ipg	168K	2009/02/04 09:45:24	r/w =	
IL	Change Drive	🗉 002.jpg	170K	2009/02/04 09:46:32	r/w	
Ir	Delete	🗐 003.jpg	167K	2009/02/04 09:46:44	r/w	/ メテイアドライノの上にホインタ
12		🖽 004.jpg	167K	2009/02/04 09:46:58	r/w	を移動して、左クリックします。
	Rename	🖽 005.jpg	170K	2009/02/04 09:47:30	r/w	
	Make Dir	🗉 006.jpg	162K	2009/02/04 09:48:20	r/w	
17	Conu	🗉 007.jpg	162K	2009/02/04 09:48:30	r/w	
	UUPY	🖽 008.jpg	173K	2009/02/04 09:49:18	r/w	<u>↓</u> スクロールバー
	Move	🖽 009.jpg	177K	2009/02/04 09:49:22	r/w	
117		🗊 010.jpg	181K	2009/02/04 09:49:28	r/w └┘	
1		🖽 011.jpg	185K	2009/02/04 09:49:32	r/w ▼	
Ple	ase push 🔘 key in the	left to move to "Control	lenuArea".			

選択したい項目にポインタを移動して、左クリックします。

・ V/DIV、TIME/DIV の設定

V/DIV の設定

電圧を観測しているチャネルの波形が画面に表示されているときに、画面に表示されている V/DIV の値の近くにポインタを移動します。ポインタの表示が ます。 マウスホイールを上に回すと V/DIV の値が大きくなり、マウスホイールを下に回すと

マワスホイールを上に回すと V/DIV の値が大さくなり、マワスホイールを下に回すと V/div の値が小さくなります。

TIME/DIV の設定

画面右上に表示されている TIME/DIV の値の近くにポインタを移動します。ポインタの表示が↓ に変わります。

マウスホイールを上に回すとTIME/DIVの値が大きくなり、マウスホイールを下に回すとTIME/DIVの値が小さくなります。

YOKOGAWA ♦ 2009/02/04 09:50:50 10 10 10 10 10 10 10 10 10 1	Normal Edge CH1 5 510m / 62.5MS/s Auto 3D CH1×CH2	
Nain : 125 k	(MD OFFIXORZ	
	200us/di	v

3.4 日付時刻を合わせる

作

測定データやファイルのタイムスタンプとなる、本機器の日付時刻を設定します。工場 出荷時の設定は特定の日付時刻のため、測定を開始する前に日付時刻を合わせておく必 要があります。

1. UTILITY キーを押します。ユーティリティメニューが表示されます。

UTILITY				1			
▼ Calibration	Remote Control	▼ Network	System Configuration	Overview	▼ Preference	▼ Self Test	

System Configuration

- **2.** System Configuration のソフトキーを押します。システムに関するメニューが 表示されます。
- 3. Date/Time のソフトキーを押します。日付時刻の設定ダイアログボックスが表示 されます。

	2011/04/12 16:29:02 12169		ц	Normal 62.5MS/s	Edge CH1 F 51.0mV Auto	
① 00.000¥/div.		M Date/Ti	ain = 125 k me Setup		200us/div	
r	Display	OFF ON				— 日付時刻表示の ON/OFF
	Format	2008/09/30				日付時刻表示の フォーマット設定
	Date	Year	Month	Day 12		
	Time	Hour 16	Minute	Second		[—] 年、月、日、時、分、 秒の設定
		9		Set		- グリニッジ標準時 との時差の設定
						— 設定の確定
Date/Time	Click Sound Langu OFF ON	age V LCD	▼ Storage Manager	USBKeyBoard USB Fur	nction	

Date/Time

4. ジョグシャトル、SET キーで日付時刻を設定します。

表示の ON/OFF(Display)

本機器の画面に表示するかしないかを設定します。

表示フォーマット (Format)

- 以下のいずれかのフォーマットで表示できます。
 - 年/月(数字)/日
 - 日/月(数字)/年
 - 日-月(英語の省略形)-年(下2桁)
 - 日 月(英語の省略形) 年

グリニッジ標準時との時差 (Time Diff. GMT)

世界標準時 (グリニッジ標準時)と本機器を使用する地域の時差を設定します。 設定範囲:-12時間 00分~13時間 00分

たとえば、日本の標準時は、グリニッジ標準時よりも9時間進んでいます。この場合、 Timeの Hour を「9」、Minute を「00」に設定します。

標準時の確認方法

本機器を使用する地域の標準時を次のいずれかの方法で確認してください。

- ・ご自身の PC の「日付・時刻に関する設定」でご確認ください。
- ・右記の URL でご確認ください。http://www.worldtimeserver.com/

Note_

- 本機器は、サマータイムの設定をサポートしていません。サマータイムを設定する場合は、 世界標準時との時差を設定しなおしてください。
- 日付/時刻の設定値は、内蔵のリチウム電池でバックアップされるので、電源を切っても 保持されます。
- ・ 本機器は、うるう年のデータを持っています。

3

3.5 オートセットアップをする

オートセットアップを実行する

1. AUTO キーを押します。

オートセットアップが実行され、Undo メニューが表示されます。

オートセットアップを取り消す

2. Undo のソフトキーを押します。オートセットアップ直前の設定に戻ります。

解 説

作

操

V/div、Time/div、トリガレベルなどのキーの設定を、入力信号に適した値に自動的に設 定します。

オートセットアップ後の中心位置

オートセットアップ後の中心位置は OV になります。

対象チャネル

LOGIC 以外のチャネルを対象にオートセットアップをします。 LOGIC が選択されている (LOGIC キーが点灯)場合、CH4 はオートセットアップの対象 になりません。 LOGIC 波形は、オートセットアップを実行しても、実行前の設定で表示されます。

オートセットアップ前に表示されていた波形

オートセットアップをすると、アクイジションメモリにあるデータは上書きされ、オー トセットアップ前に表示されていた波形は消去されます。

オートセットアップを取り消す場合

Undoのソフトキーを押すと、オートセットアップ直前の設定に戻すことができます。 ただし、設定メニューを切り替えたり、ESC キーで Undo メニューを消すと、オートセッ トアップを取り消すことができません。

オートセットアップが可能な信号

周波数約50Hz以上 入力電圧の絶対値最大値が約20mV(1:1)以上 種類繰り返し信号(ただし複雑でないもの)

Note_

- ・ 直流成分や周波数が高い成分を含む信号などの場合、オートセットアップ機能が正しく動
 作しないことがあります。
- シリアルバス信号を測定する場合は、各シリアルバス信号の設定メニューにあるオートセットアップを実行してください。

CH1 ~ CH4 関連	
Position	Odiv
Coupling	DC
BW	FULL
Offset	OV
Invert	OFF
アクイジション関連	
Record Length	オートセットアップ実行前の設定
	ただし、シングルモードでの波形取り込みができないレコード長の場
	合は、繰り返し波形を取り込める最大レコード長に設定
Mode	Normal
Hi Resolution	OFF
Interleave	OFF
Sampling Mode	Interpolaion
トリガ関連	
トリガタイプ	Edge
Mode	Auto
HoldOff	20ns
Delay	Os
Position	50%
Slope	立ち上がり
Coupling	DC
HF Rejection	OFF
Noise Rejection	OFF
Window	OFF
入力信号に依存する項目	
CH On/Off	± 20mV(1:1) 以上の電圧を検知すると ON、検知しなかったら OFF
V/div	± 3.5div を超えない最も高感度のレンジを選択する
Trigger Level	Center
Trigger Source	振幅 (Max-Min) が 1div 以上の入力のなかで最も周波数の低い CH
Time/div	振幅が 1div 以上の入力のなかで最も速い周波数が 2 周期以上観測で きる 5ms/div 以上の最も速い掃引レンジ

そのほかの設定は、オートセットアップ前の設定を維持します。

3.6 設定を工場出荷時の設定(デフォルト)に戻す

操作

工場出荷時の設定に戻す

1. **DEFAULT** キーを押します。

工場出荷時の設定内容になります。

Undo メニューが表示されます。

操作を取り消す

2. Undo のソフトキーを押します。元の設定内容に戻ります。

解説

設定した内容を工場出荷時の設定に戻すことができます。それまでの設定を取り消した いときや、初めから測定をやり直すときなどに便利です。

出荷時の設定にできない項目

- ・ 日付 / 時刻の設定
- 通信に関する設定
- ・ 日本語 / 英語の言語設定
- ・ 測定値の文字サイズの設定

操作を取り消す場合

誤って工場出荷時の設定に変更したときには、Undoのソフトキーを押すことで、操作 する前の設定に戻すことができます。ただし、設定メニューを切り替えたり、ESC キー で Undo メニューを消すと、操作する前の設定に戻すことができなくなります。

すべての設定を工場出荷時の設定にする場合

RESET キー(♥)を押しながら電源スイッチを ON にすると、日付 / 時刻の設定 (表示 ON/OFF は初期化されます)と内部メモリにストアされた設定データを除くすべての設定が工場出荷時の設定状態に戻ります。

3.7 波形の取り込みを開始 / 停止する

操作

波形の取り込みの開始 / 停止

RUN/STOP キーを押します。波形の取り込みが開始 / 停止されます。 キーが点灯しているときが、波形の取り込み中です。

シングルトリガでの波形の取り込み

SINGLE キーを押します。波形の取り込みが開始されます。 キーが点灯しているときが、信号の取り込み中です。 トリガがかかると波形を1回取り込んで、波形の取り込みを終了します。 波形の取り込みを中止する場合は、RUN/STOP キーを押します。 1回しか波形を取り込めないレコード長に設定した場合は、RUN/STOP キーを押して も SINGLE キーを押したときと同じ動作になります。

波形の取り込みとインジケータの表示

- RUN/STOP キーまたは SINGLE キーが点灯しているときは、波形を取り込み中です。 画面左上に「Running」と表示します。
- RUN/STOP キーまたは SINGLE キーが点灯していないときは、波形取り込み停止中です。画面左上に「Stopped」と表示します。

アクイジションモードがアベレージングモードのときの動作

- ・ 波形の取り込みを停止するとアベレージング処理を中止します。
- ・ 波形の取り込みを再び開始すると、新たにアベレージング処理をスタートします。

アキュムレートを行っているときの RUN/STOP 操作

- ・ 取り込みを停止すると、アキュムレートを中断します。
- ・ 波形の取り込みを再び開始すると、今までの波形を消して、アキュムレートをしなお
 します。

Note_

- ・ RUN/STOP で波形の取り込みを開始すると、それ以前にアクイジションメモリに取り込ん だデータは消去されます。
- 現在表示されている波形を画面に残すスナップショット機能もあります。波形の取り込み を続けたまま、スナップショットした波形を画面に残せます。

解 説

3.8 キャリブレーションをする

操作

1. UTILITY キーを押します。

ſ	UTILITY							
	▼ Calibration	Remote Control	▼ Network	System Configuration	▼ Overview	Preference	▼ Self Test	

| Calibration

- 2. Calibration のソフトキーを押します。
- 3. Cal Exec のソフトキーを押します。キャリブレーションが実行されます。
- オートキャリブレーションを設定する場合は、Auto Cal のソフトキーを押して、 ON または OFF を選択します。

解説

キャリブレーション

次の項目を校正します。精度のよい測定をしたいときに実行してください。

- 垂直軸のグランドレベル、ゲイン
- トリガのスレショルドレベル
- ・ 等価時間サンプリング時の時間測定値

Note

電源スイッチを ON にしたときには、上記内容のキャリブレーションを実行します。

キャリブレーションをするときの注意

- 電源 ON 時にキャリブレーションするときは、30 分以上ウォームアップしてから実行してください。電源 ON 直後では、温度などによりドリフトすることがあります。
- ・ 5~40℃(23±5℃が望ましい)で、温度が安定しているときに実行してください。
- キャリブレーションをするときは、信号を入力しないでください。入力信号を印加した状態では正常にキャリブレーションが実行できないことがあります。

オートキャリブレーション (Auto Cal)

電源を ON にしてから、次の時間経過後、下記の操作をしたとき、自動的にキャリブレーションが実行されます。

3 分後、10 分後、30 分後、1 時間後、これ以降は1 時間ごと

- ・ 波形の取り込み中 (RUN/STOP キーが点灯)に、TIME/DIV を変更したとき
- ・ 波形の取り込み停止 (RUN/STOP キーが消灯) から、波形取り込みを実行したとき

信号を入力した状態でキャリブレーションが実行されたときは、信号を入力しない状態 でキャリブレーションし直すことをおすすめします。

3.9 ヘルプを表示する

操 作

ヘルプの表示

ヘルプキー(?)を押します。ヘルプが表示されます。 画面左フレームに目次/索引、右フレームに本文が表示されます。

操作対象フレームの切り替え

スクロールなどの操作対象フレームを切り替える場合は、SET キー (〇) を左右に動かします。

スクロール / カーソルの移動

画面をスクロールしたり、目次や索引のカーソルを移動する場合は、**ジョグシャトル**を回します。

リンク先へのジャンプ

本文中の青い文字に関連する説明文にジャンプしたり、目次や索引から対応する説明 文にジャンプする場合は、青い文字または目次や索引の該当項目にカーソルを移動し、 SET キーをまっすぐに押します。

パネルキーの説明を表示

ヘルプを表示した状態でパネルキーを押します。関連した説明が表示されます。

ひとつ前の画面に戻る

ひとつ前の画面に戻るときは、RESET キー (💋) を押します。

ヘルプの非表示

ヘルプキー(?)を押します。ヘルプが消えます。

4.1 測定信号を入力する

4章では、オシロスコープの基本的な操作を理解していただくために、本機器のプロー ブ補償信号を使って、波形表示からデータ保存までの操作を説明します。

電源の接続

「2.3 電源を接続する」に従って、本機器の電源スイッチを ON にします。

プローブの接続

「2.4 プローブを接続する」に従って、本機器に付属しているプローブ 701938 または 701939 を接続します。

/EX52 または /EX54 オプション付きの場合、パッシブプローブ 701939 の代わりにミニ チュアパッシブプローブ 701946 が付属されます。

/EX22 または /EX24 オプション付きの場合、パッシブプローブ 701938 の代わりにミニ チュアパッシブプローブ 701946 が付属されます。

プローブの位相補正

^{「2.5} プローブを位相補正する」に従って、プローブの位相を補正します。 本機器のプローブ補償信号の波形が表示されます。

topped	2008/09/25 09: 25270	44:08		ų	Norn 62.5	nal MS/s	Edge CH1 F	
0001117/04	<u></u> ,		H	lain : 125 k			2000	s∕div
an a		••••		h-signitalianisia		elinteripei		
				wear		,00000,000,000	ang sa gana ang ang ang ang ang ang ang ang a	extra
CH1 Display	Coupling	▼ Probe	Invert	▼LinearScale	▼ Label	■Bandwidth	Push 🕼	0mV set
OFF ON	DC III	10:1	OFF ON	OFF	OFE	Full		Ôn

Note_

パッシブプローブ 701938、701939 および 701946 は、プローブ ID ピン付きのプローブのため、 本機器のプローブ端子に接続すると、プローブの減衰比は自動的に認識されます。

4.2 波形の表示条件を変更する

ここでは垂直軸である電圧軸のスケール/垂直ポジション、水平軸である時間軸などの 設定を変更するときの操作について説明します。 波形の取り込みを続けた状態で操作してください。

電圧軸感度の設定を「500mV/div」から「200mV/div」に変える

1. スケールを変更する CH キー (この場合は 1)を押します。

2. SCALE ノブでスケールを 200mV/div に変更します。画面のスケール表示部に、 スケールの値が拡大表示されます。

SCALE ノブを押すと、FINE が点灯しスケールを細かく設定できます。

VERTICAL POSITION 2 3 0 SCALE PUSH CO PUSH

POSITIN ノブ

200mV/cliv Main : 125 k 200us/dv Victory Main : 125 k 200us/dv Victory Victory Victory Victory Victory Victory	CI CONTRA 4	> 2008/09/25 09:4 308	45:21		ų	Noi 62	mal 5MS/s	Edge CH	1.5
CHI Display Coupling Y Probe Invert YLinearScale Y Label YBandwidtha	200m	ı∀∕div		,	4ain : 125 K	v			200us/div
CHI Display Coupling V Probe Invert VLinearScale V Label VBandwidtha Offset									
	- File		stanon and	hainnean fyrrinn ywys			altropy.	indertalijation poorte	an a
Display Coupling ▼ Probe Invert ▼LinearScale ▼ Label ▼Bandwidth™ O Offset	CH1	1						_	D
	Display	Coupling	 Probe 	Invert	■LinearScale	▼ Label	Bandwidt	htu C	Pusn♥:0mV Offset

Note_

波形取り込みをストップしているときに SCALE ノブでスケールを変更すると、波形が垂直軸 方向に拡大または縮小されて表示されます。

波形全体が見えるように垂直ポジションを下げる

POSITINノブ

1. POSITION ノブで、垂直ポジションを「-2.00div」」に変更します。変更した垂直 ポジションの値が表示されます。

POSITIN ノブを押すと、0.00div に戻ります。

時間軸の設定を「200µs/div」から「100ms/div」に変える

時間軸の設定とはグリッド(格子線)の1div(1目盛り)あたりの時間を設定することを いいます。

トリガモードが Auto または Auto Level のときに時間軸の設定を遅くする (値を大きく する)と、表示波形を更新する「更新モード表示」から波形が画面の右から左に流れる ように表示する「ロールモード表示」に変わります。

ロールモード表示は周期が長い信号や変化の遅い信号を観測するときに便利です。

1. TIME/DIV ノブで Time/div を「100ms/div」に変更します。

						Tim	e/div の値
Stopped	/09/25 09:57:30)		τl	Norma 125kS	al E	idge CH1 🗜
D 200mV∠div I th				-	- Cont		0
			Ma	in : 125 k		1	00ms∕div
L 							
÷							
CH1							Duch A-Oml
Display C	Coupling 🔻	Probe	Invert	►LinearScale	 Label 	▼Bandwidth⊡	Offset
OFF ON [⊒• DC	10:1	OFF ON	OFF	OFF	Full	

Note.

波形取り込みをストップしているときに TIME/DIV を変更すると、波形が時間軸方向に拡大ま たは縮小されて表示されます。

時間軸の設定を「100ms/div」から「500µs/div」に変える

「ロールモード表示」から「更新モード表示」に戻り5周期分の波形が表示されます。

1. TIME/DIV ノブで Time/div を「500µs/div」に変更します。

TIME/DIV ノブ

topped	2008/09/25 10:0 75	04:05		ц	Normai 25MS/	Eda	3e CH1 F
CO LOOMITI D				4ain : 125 k		50	0us/div
	ant and a state of the state of	polity in political and	849 	attern all services and	<	an General Childre	and the second
					-		
^{internetisterenteretereteretereteretereteretereter}	1994	antaonatopolo	75-to-Storet	6727	Colorphise property of the	rioinge	www.ajja
CH1	0.1				<u> </u>	•Daar de Adale tre	Push 🐼 : OmV

4.3 トリガ設定を変更する

取り込まれた測定信号の波形のうちどの時点の波形を表示するのかを決めるのがトリガ 設定です。主なトリガ設定には次のものがあります。

トリガの種類

大きく分けて Edge トリガと Enhanced トリガがあります。

トリガソース

設定されたトリガ条件の対象となる信号をトリガソースといいます。

トリガスロープ

低いレベルから高いレベルになる(立ち上がり)または高いレベルから低いレベルになる(立ち下がり)というような信号の動きをスロープといいます。このスロープをトリガ成立条件の1つの項目とするときにトリガスロープといいます。トリガソースのスロープがトリガレベルを通過した時点をエッジといいます。

トリガレベル

あるレベルをトリガソースが通過したときトリガがかかるという場合、このレベルをトリガレベルといいます。エッジ (Edge) トリガ のようなシンプルなトリガでは、あらかじめ設定した トリガレベルをトリガソースのレベルが通過するとトリガがかかります。

トリガモード

どのような条件 (タイミングや回数) で表示波形を更新するのかがトリガモードです。オート セットアップを実行すると、オート (Auto) モードに設定されます。

トリガポジション

波形の取り込みをスタートすると、設定したトリガ条件でトリガがかかり、アクイジション メモリに取り込まれた波形が表示されます。トリガポジションを画面上で移動することで、 トリガがかかったとき(トリガ点)よりも前のデータ(プリデータ)とあとのデータ(ポストデー タ)の表示の割合を変えることができます。初期設定は 50.0%(画面中央)です。

設定を初期化したりオートセットアップを実行するとトリガの種類は Edge トリガ(ト リガソース:CH1) に設定されます。Edge トリガは1つの入力信号の立ち上がりまたは 立ち下がりのエッジでトリガをかけます。

ここではトリガの種類を Edge トリガのままにしてトリガスロープ、トリガポジション を変えるときの設定操作について説明します。

本機器では、2 つのトリガを組み合わせたコンビネーショントリガを使用できます。フロント パネルの B TRIG キーが点灯しているときは、コンビネーショントリガが設定されています。 Edge トリガまたは Enhanced トリガ単独でトリガをかける場合は、B TRIG キーが点灯してい ないことを確認してください。点灯している場合は、B TRIG メニューで Combination を OFF にしてください。

Note.

トリガポジションを「30%」に変更する

波形が 20% (2div) 左に移動し、トリガがかかったあとの波形部分(ポストトリガ部)が 多く見えるようになります。

POSITION ノブ *1.* HORIZONTAL の **POSITION** ノブを回して、トリガポジションを 50%から 30% に 変更します。

		トリガ	ポジション	ン			
しプリ	リトリガ音	部		ポス	トトリガ部		. 1
			30% に設	定			
Stopped	2008/09/17 05:2 4840	24:25			Normal 25MS/s	Edge CH1	٦ E
O 200mV∠div	3		Main	: 125 k		:	© 500ue/div
							000037 017
An	50A	holicity	And a state of the		Constanting of the second	M ^{ang} alalan dan se	
L							
	Non-	ANN IN COLUMN	teninging	Productionage	Propagate and		Production of the local division of the loca
EDGE						æ	
Source	Slope	Coupling	HF Rejection No	ise Rejection	Wi	ndow O	sn⊗:u.0mV CH1 Level
CH1	Fł	AC DC	OFF	# ≭	OFF	ON C	51.0mV

Note_

- ・ トリガポジションは、画面左端からのパーセンテージで設定します。画面中央が 50%です。
- ・ POSITON ノブを押すと、トリガ点が 50% に設定されます。

4.4 波形を測定する

ここでは垂直カーソルを使って表示波形の電圧や周期を測定するときの操作について説 明します。このカーソル測定のほかにパルス波形などを測定するのに便利な、波形パラ メータの自動測定機能や演算機能などもあります。

垂直カーソルで電圧を測定する

カーソルがある位置の電圧 (Y 軸値) と時間 (X 軸値) が波形表示枠内の下部に表示されます。

- 1. CURSOR キーを押します。カーソルが表示されます。
- *2.* Type のソフトキーを押して、「!! ΔT」にを選択します。
- *3.* ジョグシャトルと SET キー(○) でカーソルを移動します。

カーソルには、次の5種類があります。

- ・ ΔT カーソル:2本の ΔT カーソルで時間軸値を測定
- ・ ΔV カーソル:2本の ΔV カーソルで垂直軸値を測定
- ・ ΔT & ΔV カーソル:各2本の ΔT/ΔV カーソルで時間軸値、垂直軸値を測定
- マーカーカーソル (Marker): 波形上を移動する4つのマーカーカーソルで波形の値を 測定
- ・ 角度カーソル (Degree): 2本の角度カーソルで角度を測定

4.5 波形をズームする

表示波形の一部を時間軸方向に拡大、縮小できます。

通常波形と2箇所のズーム波形を同時に表示できます。ズーム波形表示時には通常波形 表示枠内にズーム位置を示すズームボックスが表示されます。

- **ZOOM ノブ** *1.* **ZOOM1** または **ZOOM2** キーを押します。ズーム波形が表示されます。
- ZOOM
- ズーム位置を移動させる対象を SET キー (○) で選択後、ジョグシャトルでズームボックスを移動します。

SET キーを左右に動かすと、ズーム位置の設定桁を移動できます。

3. ZOOM ノブで拡大率を設定します。

ZOOM2 +-ZOOM1 +- ZOOM ノブを押すと、FINE が点灯し拡大率を細かく設定できます。 ZOOM ノブの対象は、ZOOM1、ZOOM2 のうち、パネルキーが明るく点灯して いる方です。

Zoom1のズームボックス Zoom2のズームボックス

ZOOM1 キー、ZOOM2 キーのうち、点灯しているキーのウィンドウが ZOOM ノブの対象です。 両方のキーが点灯しているときは、より明るく点灯しているキーが ZOOM ノブの対象です。

4.6 波形をプリント / 保存する

ここでは表示波形を内蔵プリンタ (/B5 オプション) でプリントする操作や、画面イメージまたは測定データをストレージメディアに保存する操作について説明します。

画面イメージを内蔵プリンタで印刷する

画面表示されているそのままのイメージで波形をプリントします。プリントする前に ユーザーズマニュアル[操作編](CD-ROM)の「16.1 節」に従って内蔵プリンタにロール 紙を取り付けてください。

- **7.** SHIFT キーを押した後、PRINT(MENU) キーを押します。
- 2. Print To のソフトキーで出力先を「BuiltIn」に設定します。
- Mode のソフトキーでプリントモードを設定します。 HardCopy:設定メニューも含めた画面イメージをプリントします。 Normal:設定メニューを除いた画面イメージをプリントします。 Long:時間軸方向に 2~10 倍に拡大してプリントします。

4. 再度、PRINT(MENU) キーを押します。

画面イメージデータをストレージメディアに保存する

表示されている画面イメージをデータとしてストレージメディアに保存します。

- 1. SHIFT キーを押した後、PRINT(MENU) キーを押します。
- 2. Print To のソフトキーで出力先を「File」に設定します。

Mode のソフトキーで保存モードを設定します。
 HardCopy:設定メニューも含めた画面イメージを保存します。
 Normal:設定メニューを除いた画面イメージを保存します。

Wide:時間軸方向に2倍に拡大した画面イメージを保存します。

4. Format のソフトキーでデータ形式を設定します。

9. PRINT(MENU) キーを押して、保存を実行します。

- 5. Color のソフトキーで、カラーを設定します。
- 6. Background のソフトキーで、背景の透明、不透明を設定します (PNG のとき)。
- 7. File List のソフトキーで、保存先メディア、フォルダを設定します。
- *8.* File Name のソフトキーで保存するファイル名を設定します。ファイル名を設定 しないときは、通し番号のファイル名で保存されます。
 - Edge CH1 <u>F</u> 51.0mV Auto YOKOGAWA ◆ 2011/02/24 11:32:11 Normal 62.5MS/s ų opped D 50.0mV∠div⊒t 200.0mV Main : 125 k 200us/div -200.0mV -1.000ms 200.0mV 1.0 50us/div Zoom1 : 31.25 k 50us/div Zoom2 : 31.25 0us 238:8mV PRINT File List Print To Mode Format Color Background File Name ***.pna 🖿 File ∦ Hardcopy [PNG] DFF Normal USB データ形式の設定 背景の設定 ファイル名の設定 カラーの設定 保存先メディアの設定 保存モードの設定 出力先を File に設定
- 灯

PRINT

ŇĞ

出力先が File のとき点灯

出力先が File -

以外のとき点

測定データをストレージメディアに保存する

画面表示されている波形データをストレージメディアに保存します。保存を実行すると 保存対象の波形の垂直軸 / 水平軸 / トリガの設定情報も保存されます。

- *1.* File キーを押します。
- 2. SaveのWaveformのソフトキーを押します。
- 3. File List のソフトキーで、保存先メディア、フォルダを設定します。
- *4.* File Name のソフトキーで、保存するファイル名を設定します。ファイル名を設定しないときは、通し番号のファイル名で保存されます。
- 5. Data Type のソフトキーで、データ形式を設定します。本機器で読み込めるデー タ形式は Binary です。
- *6.* Trace のソフトキーで、保存する波形を設定します。
- 7. History のソフトキーで、保存する波形のうち、ヒストリのどの範囲の波形を保存するかを設定します。
- *8.* Range/Compression のソフトキーで、保存対象ウィンドウとデータ圧縮を設定 します。

9. Save Waveform のソフトキーで、保存を実行します。

5.1 測定入力部

アナログ信号入力

項目	仕様					
入力チャネル数	DLM2022(710105)/DLM2032(710115)/DLM2052(DLM2024(710110)/DLM2034(710120)/DLM2054(710125):2(CH1、 710130):4(CH1~	CH2) ~ CH4)			
入力カップリング設定	AC1M Ω , DC1M Ω , DC50 Ω , GND	, ,				
入力コネクタ	BNC コネクタ					
入力インピーダンス	1M Ω± 1.0% 約 20pF					
	50 Ω± 1.0% (VSWR1.4 以下 (DC ~ 500MHz))					
電圧軸感度設定範囲	1M Ω入力時:	2 mV/div \sim 10V/	div(1-2-5 ステッ	プ)		
	50 Ω入力時:	2mV/div \sim 500n	nV/div(1-2-5 スラ	-ップ)		
最大入力電圧	1M Ω入力時:	150Vrms(100kHz 以上では 20dB/decade で				
	50 Ω入力時:	2.5Vrms まで低下 5Vrms 以下 また ないこと。	[〒]) は 10Vpeak 以下	、どちらも超え		
 DC オフセット最大設定範囲	1M O 入力時	0.0 2 20				
(プローブの減衰比を1:1	$2mV/div \sim 50mV/div$:	\pm 1V				
に設定したとき)	$100 \text{mV/div} \sim 500 \text{mV/div}$	$\pm 10V$				
	$1V/div \sim 10V/div$:	± 100V				
	2mV/div \sim 50mV/div :	\pm 1V				
	100mV/div \sim 500mV/div :	\pm 5V				
		+ (1.5% of 8div	+オフセット雷	正確 宦)		
オフセット電圧確度 ^{*1}	$2mV/div \sim 50mV/div$	+ (1% of 設定値	(+ 0.2 mV)			
	$100 \text{mV/div} \sim 500 \text{mV/div}$	+ (1% of 設定値	(+ 2mV)			
	$1V/div \sim 10V/div$:	土 (1% of 設定値	+ 20 mV			
周波数帯域幅	1M Ω入力時 (付属の 10:1 パッシブプローブ使用	DLM2022/	DLM2032/	DLM2052/		
$(\geq - 3 dB)^{*1*2}$	時 (10:1 換算)、プローブ先端から規定)	DLM2024	DLM2034	DLM2054		
(±3divp-pの正弦波入力時)	100V/div \sim 100mV/div :	$\rm DC\sim 200 MHz$	$\rm DC\sim 350 MHz$	$\rm DC\sim 500 MHz$		
	50mV/div \sim 20mV/div :	$\rm DC\sim 150 MHz$	$\rm DC\sim 300 MHz$	$\rm DC \sim 400 MHz$		
	50 Ω入力時					
	500mV/div \sim 10mV/div :	$\rm DC\sim 200 MHz$	$\rm DC\sim 350 MHz$	$\rm DC\sim 500 MHz$		
	5mV/div \sim 2mV/div :	$\rm DC\sim 150 MHz$	$\rm DC\sim 300 MHz$	$\rm DC \sim 400 MHz$		
AC 結合時の-3dB 低域減衰点	10Hz 以下 (付属の 10:1 プローブ使用時 1Hz 以	下)				
チャネル間スキュー (同一設定条件時)	1ns 以下					
残留ノイズレベル *3	0.4mVrms または 0.05div rms のどちらか大きいプ	方(Typical 値 ^{*4})				
チャネル間アイソレーション (同一電圧軸感度)	最大帯域幅:- 34dB(Typical 値 ^{*4})					
A/D 変換分解能	8bits(25LSB/div)					
	最大 12bits(高分解能モード時)					
プローブの減衰比設定	電圧プローブ:	$0.001:1 \sim 2000$):1 (1-2-5ス	テップ)		
	電流プローブ:	$0.001A: 1V \sim 20$	DOOA:1V (1-2	-5 ステップ)		
帯域制限	チャネルごとに、FULL、200MHz、100MHz、200 250kHz、125kHz、62.5kHz、32kHz、16kHz、8kH ディジタルフィルタ (JIR+EIR) で宇田	MHz、10MHz、5/ Hz から選択が可能	MHz、2MHz、1 ^{٤。}	MHz、500kHz、		
	_/ 1 / ////////////////////////////////	ド時 *2				
	大空山ウィノファノー 「、() Pyra向力胜化し インタリーブモード ON 時・	1 PV 2 5GS/c (1 25GS/c	c)			
	インタリーブモード OFF 時	1 2565/2 (625MC	2) /c)			
	- / / / / / / / / · · · · · · · · · · ·	12565/5	101			
	インタポレート (補間サンプリング)モード:	125GS/s				

5.1 測定入力部

項目	仕様		
最大レコード長	繰り返しアクイジションが可能な最大レコード長		
	オプションなし:	1.25M Points	
	/M1 オプション時:	6.25M Points	
	/M2 オプション時:	12.5M Points	
	/M3 オプション時:	25M Points	
	シングルアクイジションが可能な最大レコード長、() 内はインタリーブモード ON 時		
	オプションなし:	6.25M Points (12.5M Points)	
	/M1(S) オプション時:	25M Points (62.5M Points)	
	/M2 オプション時:	62.5M Points (125M Points)	
	/M3 オプション時:	125M Points (250M Points)	

*1 基準動作状態 (5.11 節参照) で、30 分のウォームアップ時間経過後、キャリブレーションを実行した直後に測定した値です。

*2 繰り返し現象の場合の値です。

単発の周波数帯域は、DC ~サンプリング周波数 /2.5、または 繰り返し現象の周波数帯域 のどちらか小さい方

*3 入力部を短絡、アクイジションモードをノーマル、アキュムレートを OFF、およびプローブの減衰比を 1:1 に設定したときの値です。

*4 Typical 値は代表的または平均的な値です。厳密に保証するものではありません。

	701980、701981、701988、701989(8 ビット入力)				
入力点数	8	· · · · · ·			
非破壊最大入力電圧	701980、701981、701989:		± 40V(DC + ACpeak) または 28Vrms		
	701988:		± 42V(DC + ACpeak) または 29Vrms		
	周波数によるディレーティングは各ロジックプローブの取扱説明書を参照のこと。				
	701980 使用時	701981 使用時	701988 使用時	701989 使用時	
入力レンジ	\pm 40V	\pm 10V	\pm 40V	スレショルドレベル±6V	
最小入力電圧	500mVp-p	500mVp-p	500mVp-p	300mVp-p	
最大トグル周波数 ^{*1}	100MHz	250MHz	100MHz	250MHz	
入力インピーダンス (Typical 値 ^{*3})	1M Ω / 約 10pF	10K Ω / 約 9pF	1M Ω / 約 10pF	約 100k Ω / 約 3pF	
スレショルドレベル設定	8ビット共通	8ビット共通	8ビット共通	8ビット独立	
スレショルドレベル可変範 囲	\pm 40V	± 10V	\pm 40V	\pm 6V	
スレショルドレベル設定分 解能	0.1V	0.1V	0.05V	0.05V	
スレショルドレベル確度 ^{*1}	土 (0.1V +設定の 3%)	土 (0.1V +設定の 3%)	土 (0.1V +設定の 3%)	土 (0.1V +設定の 3%)	
ヒステリシス電圧 (Typical 値 ^{*3})	80mV	50mV	100mV	ノイズリジェクション OFF 時:100mV ノイズリジェクションON 時:250mV	
最小パルス幅	5ns	2ns	5ns	2ns	
最高サンプルレート 実時間サンプリングモード、()内は高分解		-ド、() 内は高分解能モ-	Eード時 *2		
	インタリーブモード ON 時:		ロジック波形の取り込み不可		
	インタリーブモード OFF 時:		1.25GS/s (625MS/s)		
	等価時間サンプリング	モード:	125GS/s		
	補間サンプリングモー	<u> </u>	_125GS/s(ロジック波形	にパルス補間)	
最大レコード長	繰り返しアクイジションが可能な最大レコード長				
	オプションなし:		1.25M Points		
	/M1 オフション時:		6.25M Points		
			12.5M Points		
			25MI POINTS		
	ンフツルアクインンヨフか可能な取てレコート長 オプションたし・				
	オフンヨノなし・		0.201VI POINTS		
	/11/1 イノンヨノ吁・		201VI POINLS		
	/IVIZ オノンヨン时・ ///2 オプション時・		125M Points		
	/ハレコ ヘ ノンヨノ吋・		IZJIVI POITILS		

ロジック信号入力

*1 基準動作状態 (5.11 節参照) で、30 分のウォームアップ時間経過後。

*2 分解能が向上するのはアナログ波形のみです。

*3 Typical 値は代表的または平均的な値です。厳密に保証するものではありません。
5.2 トリガ部

項目	仕様		
トリガモード	オート、オートレベル、	ノーマル、シン	·グル、N シングル
	シングルは、SINGLE キー	-を押してアクィ	イジションをスタートした場合、またはシングルアクイジ
	ションしかできないレコ	ード長のときに	こ RUN/STOP キーを押してアクイジションをスタートした
	場合。		
トリガソース	CH1 \sim CH4 ^{*1} :	各入力端子に入	入力される信号
	LINE:	接続された商用	用電源信号 (Edge トリガのみ使用可能)
	EXT:	TRIG IN 端子 (D	DLM2022/DLM2032/DLM2052 では EXT. 端子) から入力さ
		れる信号	
	<u>ロジックビット0~7*2</u>	ロジック信号入	入力ポートの各端子に入力される信号
トリガカップリング	CH1 \sim CH4 ^{*1} :	DC/AC	
	EXT:	DC	
HF リジェクション	CH1 ~ CH4 ^{*1} の各チャネ	ルごとにトリガ	ヴソースに対する帯域制限が設定可能
	OFF :	帯域制限無し	
	15kHz:	DC ~約 15kHz	<u>Z</u>
	20MHz:	DC ~約 20MHz	Z
ノイズリジェクション	CH1 ~ CH4 ^{*1} の各チャネ	ルごとにノイズ	ズリジェクションの ON/OFF(トリガレベルのヒステリシス
	幅の選択)が可能。ただ	し、TV トリガ設	設定チャネルは設定不可。
	OFF :	約 0.3div のヒス	ステリシス
	ON :	約 1.0div のヒス	ステリシス
トリガレベル設定範囲	CH1 \sim CH4 ^{*1} :	画面の中心から	$5\pm$ 4div
	EXT:	± 2V(DLM2024	4/DLM2034/DLM2054)
		± 1V(DLM2022	2/DLM2032/DLM2052 の± 1V レンジ)
		\pm 10V(DLM202	22/DLM2032/DLM2052 の± 10V レンジ))
トリガレベル設定分解能	CH1 \sim CH4 ^{*1} :	0.01div、ただし	し TV トリガの場合は 0.1div
	EXT:	5mV(DLM2024,	4/DLM2034/DLM2054)
		5mV(DLM2022,	2/DLM2032/DLM2052 の土 1V レンジ)
		50mV(DLM202	22/DLM2032/DLM2052 の± 10V レンジ))
トリガレベル確度	$CH1 \sim CH4^{*1*3}$:	± (0.2div +トリ	リガレベルの 10%)
	EXT ^{*4} :	± (50mV +トリ	リガレベルの 10%) (DLM2024/DLM2034/DLM2054)
		± (50mV +トリ	リガレベルの 10%) (DLM2022/DLM2032/DLM2052 の土
		11レンジ)	
		± (500mV + ト	トリガレベルの10%) (DLM2022/DLM2032/DLM2052の
	a	±10Vレンジ)	
Window コンバレータの設	CH1 ~ CH4" のチャネル	ごとにウィンド	ドウコンバレータの ON/OFF が可能。
定	OFF :	通常のコンバレ	
	0111	Edge の 極性は	、 KISE / Fall、 Qualify 条件は H / L / X
	ON.	リイントリコン	
		Edge の極性は あした記由日本	、Enter / Exit、 Quality 余件は IN / OUT / X
WINDOW トリカレイNV設定 筋囲	CHI~CH4 のテヤイル	(ことに改正り肥	
単じばし	Center .	回 回 回 回 の 中 い か ら に か ら	っこ 40IV
		Center を中心に でとに Contor	
WINDOW トリカレイ VD推送	て限しベルそれぞれにつ	いて 下記のト	el と Wildin にようて設定されるワイントワの上限レベルと、 、T ガレベル破産が海田される
	+ (0.2 div + b)	リガレベルの 10	10%)
	ただし、上限レベルまた	は下限レベルが	「面面の中心から+ 4div を超えた場合は、そのレベルには
	適用されない。	10.1120 0000	
外部トリガのプローブの減	1:1、10:1		
衰比設定			
トリガ感度	CH1 ~ CH4 ^{*1} :	1div _{P-P}	DC ~最大帯域幅 (ノイズリジェクション OFF)
	EXT:	100mV _{P-P}	DC \sim 100MHz(DLM2024/DLM2034/DLM2054)
		100mV _{P-P}	DC \sim 100MHz(DLM2022/DLM2032/DLM2052 の \pm 1V \lor
			ンジ)
		1V _{P-P}	DC \sim 100MHz(DLM2022/DLM2032/DLM2052 ${\rm O}\pm$ 10V ${\rm V}$
			ンジ)
トリガポジション	表示レコード長を 100%	とし、0.1%分解	解釈で設定可能。
トリガディレイ設定範囲	- (ポストトリガ分の時	間)~+10s	
ホールドオフ時間設定範囲	$20 ns \sim 10 s$		

項目	仕様	
トリガタイプ (A トリガ)		
	Edge:	単一トリガソースのエッジでトリガ
		ソースは CH1 ~ CH4*1、ロジック Bit 0 ~ 7*2、EXT および LINE
	Edge OR:	複数トリガソースのエッジ条件のいずれかが成立した時点でトリガ
	Educe Overlife d	ソースは(HI~(H4 ' Ourlife タルポナカに、 B・ 「 」 ビギン 「 スのエル ジズ」 」 ビギ
	Edge Qualified .	Quality 余件成立中に、単一トリカソー人のエツンでトリカ ハーフはエッジがでは1~では4*1。ロジック Bit 0~7*2 たとび EVT で
		クースはエックがでローンCH4 、ロクック Bit 0 ~ 7 および LAT C、 Oualify 冬件が CH1 ~ CH4 ^{*1} およびロジック Bit 0 ~ 7 ^{*2}
	State :	State 条件の成立 / 不成立の変化点でトリガ
		State 条件は各ソースの AND または OR
		State 条件の成立 / 不成立を判定するクロックチャネルを選択可能で、ク
		ロックなしも選択可能。
		ソースは State クロックともに CH1 ~ CH4 ^{*1} およびロジック Bit 0 ~ 7 ^{*2}
	Pulse Width:	単一トリガソースの幅でトリガ
		ソースは(HI~(H4′、ロンツク BIEU~/ および EXI more than : タ供式立時間が Time1 トリートントキータ供表式立て亦化
		INDIE UNATION 新作成立時间がTIMELまり長いとさ、余件不成立に変化 した時占でトロガ
		Time1:4ns ~ 10s、設定分解能:2ns
		less than: 条件成立時間が Time1 より短いとき、条件不成立に変化
		した時点でトリガ
		Time1:6ns ~ 10s、設定分解能:2ns
		between: 条件成立時間が Time1 より長く Time2 より短いとき、条
		件不成立に変化した時点でトリガ Timeol:Amo 、(10g Amo) 和安八級社:2mg
		Time1・4NS ~ (TOS-4NS)、改進力辨能・2NS Time2:8ns ~ 10s 設定分解能・2ns
		Time1-Time2 問隔の最小値:4ns
		out of range: 条件成立時間が Time1 より短いもしくは Time2 より長い
		時、条件不成立に変化した時点でトリガ
		Time1:6ns ~ (10s-4ns)、設定分解能:2ns
		Time2:8ns~10s、設定分解能:2ns
		lime1-lime2 間隔の最小値:4ns (lime1=6ns、 Time2, and にもの子, 2nd)
		TIME2=8NS のとさのみ 2NS) time out: タ供式立時間が Time1 たおうた時占否トリガ
		lime Oul: 条件成立时间が lime で超えた時点でトリカ Time 1 · 4ns ~ 10s 設定分解能 · 2ns
		時間確度 $*4$: + (0.5% of 設定値 + 2ns)
		最小時間検出 2ns(Typical 值 *5)
		幅:
	State Width:	State 条件の成立 / 不成立の時間幅でトリガ
		State 条件については、State Pattern を参照
		ソースは State クロックともに CH1 ~ CH4 ⁻¹ およびロジック Bit 0 ~ 7 ⁻²
	Flow Dow *6 ·	時間設定については、Pulse Width を参照 FlavBac バス信号に対してトリギ
	Flexing -	Flexindy ハス信号に対してドリカ ソースけてH1 ~ CH4
		Mode : Frame Start, Error, ID/Data, ID OR
		Bit Rate: 2.5M、 5M、 10Mbps
		バスチャネル:A、B
	CAN ^{*6} :	CAN(Controller Area Network) バス信号に対してトリガ
		У— Д.G. CH4 Mada : SOE Error ID/Data ID/OR
		Rit Rate: 33 3k 83 3k 125k 250k 500k 1Mbns お上でLiser Define
		User Define は 10k ~ 1Mps (0.1kbps 分解能)
	CAN FD ^{*6} :	CAN FD バス信号に対してトリガ
		ソースは CH1 ~ CH4
		Mode: SOF, Error Frame, ID, ID OR
		Bit Kate: アービトレーションノエース
		200K、 000K、 11/10/PS みよび USER Define User Define は 20k ~ 1Mbps (0 1kbps 分解的)
		ジェークリューズ
		500k、1Mbps、2Mbps、4Mbps、5Mbps、8Mbps
		および User Define
		User Define は 250k ~ 10Mbps (0.1kbps 分解能)

5.2 トリナ	ガ部
---------	----

項目	仕様	
	LIN ^{*6} :	LIN(Local Interconnect Network) バス信号に対してトリガ
		ソースは CH1 ~ CH4
		Mode: Break Synch、Error、ID/Data、ID OR
		Bit Rate:1200、2400、4800、9600、19200bps および User Define
		User Define は 1k ~ 20kbps (0.01kbps 分解能)
	SENT ^{*6} :	SENT 信号 (J2716 JAN2010 とそれ以前)に対してトリガ
		ソースは CH1 ~ CH4 およびロジック Bit 0 ~ 7*2
		Mode : Every Fast CH
	× · · · × ·	クロック周期: 1µs ~ 100µs (0.01µs 分解能)
	PSI5 Airbag*6 :	PSI5 Airbag 信号に対してトリガ
		$Y - \chi t CH1 \sim CH4$
		Mode : Sync, Start Bit, Data
		Bit Rate: 125kbps、189kbps、およいUser Define
	LLADT*6 .	User Define は 10.0K~ 1000.0Kbps (0.1Kbps 分解能)
	UARI °.	UAKI(KS232) 信号に対してトリカ
		ソースは(HI~(H4 みよびロンツク BIEU~ / ² Mada: Eveny Data Error Data
		NOULE · EVELY Dala, ETION, Dala Exercise · Shit Data (Davity bit $f = 1$) · Thit Data (Davity bit
		Roit Data Parity bit
		Rit Rate : 1200 2400 4800 9600 19200bns 38400bns
		57600bps、115200bpsなよびUser Define
		User Define は 1k ~ 1000kbps (0 1kbps 分解能)
	12C*6:	120 バス信号に対してトリガ
	120	ソースは CH1 ~ CH4 およびロジック Bit 0 ~ 7^{*2}
		Mode: Every Start, Adr Data, NON ACK, General Call, Start byte,
		HS Mode
	SPI*6:	SPI(Serial Peripheral Interface) バス信号に対してトリガ
		ソースは CH1 ~ CH4 およびロジック Bit 0 ~ 7*2
		Mode: 3wire、 4wire
	User Define:	汎用のシリアル通信の信号に対してトリガ
		ソースは CH1 ~ CH4*1
		データチャネル、チップセレクトチャネル、クロックチャネルおよびラッ
		チチャネルを指定することが可能。
		$E_{V} + V - F$: 1k ~ 200Mbps($D = V - F$)
		TK~49.5Mbps(クロツクなし)
	T_{1}	
	IV .	合理放达力式のヒナオ信ちに対して指定したノイールト番ち、フイノ番 ローポニリニップトリボ
		亏、小フリナイ Cトリカ ソーフは CH1 ~ CH1 ^{*1}
		ノースはCTTTP CTH Mode・ NTSC・ NTSC(525/60/2) 信号でトリガ
		Node: N15e(325/00/2) 信号でトリガ PAI: PAI (625/50/2) 信号でトリガ
		SDTV: SDTV(480/60p) 信号でトリガ
		HDTV: 下記の HDTV 信号でトリガ
		1080/60p、1080/60i、1080/50ip、1080/25p、
		1080/24p、1080/24sF、720/60
		USER Def: Standard/High Definition の選択、Hsync 周期の設定、
		Sync Guard の設定を行うことで、任意の TV 信号で
		トリガ。Sync Guard は Hsync の 60 ~ 90%(設定分
		解能 1%) で設定可能。
		Polarity: Pos、Neg
		HF Kej · NISC/PAL · 3UUKHZ(回定)
		SUTV/HUTV・UFF(回走) Uppr Dof:OFE またけ 200k日まが翌世司生
		しいに レビー・ UFF み / crk いUKTL を迭伏り形 Line・ 5~1054(NTSC) 2~1251(DAL) 8~2251 (SDTV)
		$2 \sim 2251$ (HDTV) $2 \sim 2251$ (JDTV) χ
		Field: 1, 2, X
		Frame Skip: $1, 2, 4, 8$

*1 DLM2022、DLM2032、DLM2052 は CH1、CH2。

*2 ロジックは DLM2024、DLM2034、DLM2054 のみ。

*3 基準動作状態 (5.11 節参照) で、30 分のウォームアップ時間経過後、キャリブレーションを実行した直後に測定した値です。

*4 基準動作状態 (5.11 節参照) でウォームアップ時間経過後に測定した値です。

*5 Typical 値は代表的または平均的な値で、厳密に保証するものではありません。

*6 FlexRay、CAN、CAN FD、LIN、SENT、PSI5、UART、I2C、SPI は 4ch モデルのオプション。

項目	仕様		
AB トリガ	B トリガ条件を設; 下記に示す AB ト (トリガタイプ (A	B トリガ条件を設定することで、A トリガとの組合せ条件でトリガをかけることが可能 下記に示す AB トリガの種類によって、設定できないトリガタイプがある。 (トリガタイプ (A トリガ) 参照)	
	OFF: A Delay B:	条件 A だけでトリガ (条件 B を使わない) 条件 A 成立から指定時間経過後、条件 B 成立でトリガ。 B トリガに Edge OR、Width、CAN FD、SENT、PSI5 Airbag、TV は設定不可。 設定時間:10ns ~ 10s	
	A to B(N):	条件 A 成立後、条件 B が N 回成立でトリガ。 B トリガに Edge OR、Width、CAN FD、SENT、PSI5 Airbag、TV は設定不可。 設定回数:1 ~ 10 ⁹	
	Dual Bus:	シリアルバストリガ (CAN FD、SENT、PSI5 Airbag を除く) の条件 A、B のどちらかが成立でトリガ	

5.3 時間軸

仕様
1ns/div \sim 500s/div
± 0.002%
± (0.002% + 50ps + 1 サンプル時間)
_

* 基準動作状態 (5.11 節参照) でウォームアップ時間経過後に測定した値です。

5.4 表示部

項目	仕様
ディスプレイ	8.4 型 (21.3cm) カラー TFT 液晶ディスプレイ *
表示画面サイズ	171.264mm(横) × 128.488mm(縦)
全表示画素数	1024 × 768 (XGA)
波形表示画素数	1000 × 640

* 液晶表示器は数点の欠陥を含む場合があります (RGB を含む全画素数に対して 4ppm 以内)。

液晶表示器に、一部に常時点灯しない画素および常時点灯する画素が存在する場合があります。これらは故障ではありません。 ご了承ください。

5.5 機能

垂直軸 / 水平軸

項目	仕様
チャネルの ON/OFF	CH1 ~ CH4 ^{*1} および LOGIC 独立に ON/OFF が可能。
	CH4 と LOGIC ^{*2} はどちらか一方のみ ON にできる。
	インタリーブモード時は自動的に偶数チャネル (LOGIC ^{*2} を含む) が OFF になる。
ロジック波形のバス表示	
	設定した記数法 (Format) とビットオーダー (Bit Order) に従って、バス表示する。
垂直ポジション設定	アナログ波形: 波形表示枠の中心から±4divの範囲で波形移動が可能。
	ロジック波形 *2: ロジック波形の中心が波形表示枠の中心から± 4div の範囲で波形移動が可能。
	垂直ポジションノブを押すことで、ポジションを初期値 (0div) に戻すことが可能。
垂直スケールの設定	
	ノブを押すことで Coarse / Fine を切替可能。
	Coarse 時の設定範囲は 5.1 測定入力部 (アナログ入力部) を参照。
	Fine の垂直軸感度はデジタルズームにて実現。
	ストップ時にスケールを変更した場合は、垂直方向に波形を拡大 / 縮小することが可能。
	ロジック波形 *2 は 3 段階で表示サイズを拡大可能。
 入力フィルタ	CH1 ~ CH4 ^{*1} 独立に帯域制限が可能。
	フィルタの種類は「5.1 測定入力部」の「帯域制限」を参照。
オフセットキャンセル	CH1 ~ CH4 ^{*1} 共通で ON/OFF が可能。
	OFF: オフセット値をカーソル測定、演算、波形パラメータの自動測定結果に反映しない。
	ON: オフセット値をカーソル測定、演算、波形パラメータの自動測定結果に反映する。
インバート表示	 CH1 ~ CH4 ^{*1} 独立に垂直ポジションを中心に波形の反転表示が可能。
	各種設定、測定は反転する前の波形に対して実行される。
リニアスケーリング	
ロジックチャネルのスレ	スレショルドレベル設定時、下記のプリセット値を選択可能。
ショルドレベルプリセット	CMOS(5V)=2.5V、CMOS(3.3V)=1.65V、CMOS(2.5V)=1.25V、CMOS(1.8V)=0.90V、ECL=-1.30V
機能	
スキュー調整	
	トリガスキューは調整不可。
	ロジック波形はポッド (8bit) 単位での調整が可能。Bit ごとの調整は不可。
	調整範囲は土 100ns(0.01ns 分解能)
水平ポジション設定	水平ポジションノブで、トリガポジションまたはトリガディレイを設定可能。
	ノブ設定は、DELAY キーの LED によって下記の意味づけとなる。
	LED 消灯: トリガポジション
	LED 点灯: トリガディレイ
	トリガポジションおよびトリガディレイ仕様の詳細は、「5.2 トリガ部」の「トリガポジション」ま
	たは「トリガディレイ設定範囲」を参照。
ディレイキャンセル	設定した遅延時間を時間測定値に反映するかどうかを選択可能。
	ON: トリガポジションを 0 s として時間測定を行う (時間測定値に反映しない)。
	OFF: トリガ点をOsとして時間測定を行う(時間測定値に反映する)。
時間軸の設定	TIME/DIV ノブで時間軸設定が可能。
	設定範囲は、「5.3時間軸」の「時間軸設定範囲」を参照。
	ストップ時に時間軸を変更した場合は、時間軸方向に波形を拡大 / 縮小することが可能。
ロールモード	トリガモードがオート、オートレベル、シングルのときに、以下の時間軸でロールモード表示にな
	る。トリガモードは、「5.2 トリガ部 トリガモード」を参照。
	1.25M Points 以下の場合: 100ms/div ~ 500s/div
	6.25M Pointsの場合: 500ms/div ~ 500s/div
	12.5M Points の場合: 500ms/div ~ 500s/div
	25M Points 00場合: 1s/div ~ 500s/div
	b2.5M POINTS の場合: 5s/div ~ 5UUS/div
	125M Points の場合: 5s/div ~ 500s/div
	25UM Points の場合 10s/div ~ 500s/div

*1 DLM2022、DLM2032、DLM2052 は CH1、CH2。

*2 ロジックは DLM2024、DLM2034、DLM2054 のみ。

信号の取り込み / 画面表示

<u>取り込みモード</u>	 ノーマル、エンベロープ、アベレージングの3つの取り込みモードの選択が可能。
	Normal: 通常のサンプリング。特別な処理はしない。
	Envelope: リアルタイムサンプルの最高サンプルレートでサンプリングされたデータから、
	・ メモリへの取り込み間隔ごとに求めた最大 / 最小値を取り込む。
	Average: 複数回の取り込みデータ (Normal) の平均化処理を行う。トリガモードがオート、
	オートレベル、ノーマルのときは指数平均を行い、シングルのときは単純平均を
	行う。N シングルのときは、トリガモードをノーマルとして扱う。指数平均の減
	衰定数と単純平均の回数は、いずれも 2 ~ 1024(2º ステップ)。ロジック波形は平
	均化の対象外。トリガモードについては、「5.2 トリガ部 トリガモード」を参照。
サンプリングモード	リアルタイム、リペティティブ、インタポレーションの3つのサンプリングモードの選択が可能。
	設定レコード長を維持したままではリアルタイムサンプリングの最高サンプルレートを超えるサ
	ンフルレートを必要とする短い時間軸設定において、「記のように動作か異なる。
	最高サノノルレートについては、「5.」測定入力部 - 最高サノノルレート」を参照。 ■ Packing ・ - まニレコードEt にノース公開たけ開始た中国
	Kealtime · 衣示レコート長を短くして必要な時间軸を実現。
	Interpolation ・ 相向リノノリノクを行つ。さらに時间軸設定を超くすると、相向リノノリノク
	レートの工限を迫んる場口は、衣小レコート技を超くして必要な時间軸を美況 まる
	9つ。 Repetitive: 笑価時間サンプリングを行う さらに時間軸設定を短くすると 笑価時間サン
	ーードロードの上限を招える場合は 表示レコード長を短くして必要な時間
	朝を実現する。
高分解能モード	ディジタルフィルタとの組合せでアナログ波形の S/N 比を改善。
	最大 12 ビットまで垂直分解能を向上。
 レコード長	標準モデル: 1.25k Points / 12.5k Points / 125k Points / 1.25M Points / 6.25M Points(シン
	グルのみ)/12.5M Points(インタリーブ、シングルのみ)
	/M1(S) オプション時: 1.25k Points / 12.5k Points / 125k Points / 1.25M Points / 6.25MPoints / 25M
	Points(シングルのみ) / 62.5M Points(インタリーブ、シングルのみ)
	/M2 オプション時: 1.25k Points / 12.5k Points / 125k Points / 1.25M Points / 12.5M Points /
	62.5M Points(シングルのみ) / 125M Points(インタリーブ、シングルのみ)
	/M3 オプション時: 1.25k Points / 12.5k Points / 125k Points / 1.25M Points / 25M Points / 125M
	Points(シンクルのみ)/250M Points(インタリーフ、シンクルのみ)
ヒストリ機能	ヒストリ波形(同一の取り込み条件で取り込んた過去の波形)を自動で保持。
	/ ハレーンモート、リハナイナイノモート、ロールモート時は个可。ンノクルのみ可能なレコー い目乳中時ま 天司
	下 た 成 と 付 じ 小 り 。 早 十 の 但 持 可 能 物 け り 下 の と お り
	取入り床狩り形数は以下りとのり。
	(M1(S) オプション時 : 最大 10000 回分 (レコード長 1 25k Points 時)
	/M1(5) ダンタン時、 最大 10000 回分 (レコード長 1.25k Points 時)
	/M3 オプション時: 最大 50000 回分 (レコード長 1.25k Points 時)
アキュムレート	
ズーム	垂直軸方向 (アナログ波形のみ) または時間軸方向に波形を拡大可能。
	Zoom1 および Zoom2 の 2 箇所のズームが可能で、それぞれ独立した拡大率設定が可能。
	ズームの補助機能としてオートスクロールおよびサーチがある。サーチについては、後述の機能「波
	形の検索」を参照。
	垂直軸ズーム
	ズーム対象波形: CH1 ~ CH4 [*] 、MATH1、MATH2 [*]
	スーム位置: スーム対象波形の拡大中心位置を設定可能。設定範囲は±4div。
	人一ム学· 設正配囲は ~ IU 倍。 味明熱ブ /
	ヘームビョ・ アイノ波形り拡入中心世直を設足可能。設足軋囲はエ DOIV。 ブーム変・ 時間軸拡大変再用ノブズ恐空可能 ノブを押まて Pare A Convertions の切詰
	ヘ ムギ・ 吋间神加八竿守用ノノ(ひたり形。ノノを押りこと)(COdise / Fine の切答 が可能 Coarce 時は 1,2.5 初辺 Fine 時は上り細かく恐空可能 認空節
	ルーJ 能。Coulde Pyra + 2-3 ボッリて、THE 内はな 7 旭ル への足り能。の足戦 囲け 2 またけ 2 5 倍~ 2 5 またけ 3 1 25 占 /10 div に相当する位率 レコー
	四はとないにはというローといることが、ことのにはいての「ない」の「などでです。レコー
	オートスクロール機能:指定した方向に、ズーム位置を自動的に移動(スクロール)させる機能。

項目	仕様
表示フォーマット	1、2、3、4、6 分割表示 (DLM2022、DLM2032、DLM2052 は 1、2、3 分割表示) が可能。
	分割数は Auto が選択可能で、Auto 時は表示されているトレース数に応じて自動的に分割数が選
	択される。
	ズームウィンドウは、メイン連動か1、2、3、4、6分割表示 (DLM2022、DLM2032、DLM2052 は
	1、2、3分割表示)が可能。また、ズームと同時にメインを表示するときに、メイン側の垂直方向
	の表示領域を 20% と 50% から選択可能。
表示補間	サンプル点のドット表示 / サイン補間表示 / 直線補間表示 / パルス補間表示の選択が可能。
グラティクル	ドットグリッド/ライングリッド/フレーム/クロスへアーの4種類の目盛りを選択可能。
	またファイングリッドの ON/OFF を選択可能。
	通常のグリッドは波形の前面、ファイングリッドは波形の背面に表示される。
補助表示の ON/OFF	スケール値、波形ラベル名の ON/OFF が可能
LCD バックライトの調整	LCD バックライトの手動 OFF、自動 OFF(設定した時間キー操作をしないと自動的に OFF)、輝度
	調整が可能。
	バックライトが OFF したときは、何れかのキーを押すとバックライトが点灯する。
	輝度調整は1~8の8段階で調整可能。
X-Y 表示	XY1とXY2の2つ(DLM2022、DLM2032、DLM2052はXY1の1つ)のX-Y波形表示が可能。
	X-Y 波形は X-Y 波形専用ウィンドウに表示され、T-Y 波形との同時表示も可能。
	X-Trace、Y-Trace、X-Y 表示の対象となる時間範囲を指定する。
	X-Irace: CH1 \sim CH4", MAIH1, MAIH2"
	Y-Irace: CH1 ~ CH4 、 MAIH1、 MAIH2
アキュムレート	設定された残光時間内の波形を重ね書きする。
	残光時間は 100ms ~ 100s および無限時間。
	インテンシティモードとカフーモードの選択か可能。
	Intensity:それぞれのチャネルの色で古い波形の輝度を下げなから重ね書きを行う。
	Color: インテンシティモートの輝度をカラークレートで表示。
スナップショット	現在表示されている波形をスナッフショット波形として画面に残すことが可能。
	_ 人ナッフショット波形は保存 / 読み込みが可能。
クリアトレース	表示している波形を消すことが可能。

* DLM2022、DLM2032、DLM2052 は CH1、CH2、Math1。

演算/解析/検索

項目	仕様
演算	
	ソースはそれぞれ次のとおり。
	MATH1 : CH1 \sim CH4 ^{*1}
	MATH2: CH1 ~ CH4、MATH1
	演算できる最大のレコード長は次のとおり。
	標準モデル: 6.25M Points
	/M1(S) オプション時: 25M Points
	/M2 オプション時: 62.5M Points
	/M3 オブション時: 125M Points
	演算の種類は次のとおり。
	標準モデル: 演算子 +、-、*、FILTER、INTEG、COUNT(EDGE/ROTARY)
	ユーザー定義演算(オフション):次の演算子や定数を仕意に組み合わせた演算式を設定可能。
	演算子 +、-、*、/、ABS、SQRI、LOG、LN、EXP、P2、
	SIN, ASIN, COS, ACOS, IAN, ATAN, PH,
	DIFF, INTEG, FILTT, FILTZ, HLBT, MEAN,
	DELAY, BIN, PWHH, PWHL, PWLL,
	PWXX、FV、DUTYH、DUTYL、DA 定数 K1 - K4 0 - 0 DL - fe 1/fe Eve Measure
	正致 NT~N4、U~9、P1、e、IS、I/IS、EXP、Medsure
FFI	FFTT 2 FFT2 の 2 フ (DLM2022、DLM2032、DLM2032 は FFTT の T フ) の FFT(高迷ノーウエ変換) 空管油形もまニ司能
	ケース・ CITI->CITII->CITI->CITI->CITI->CITI->CITI->CITI->CITI->CITI->CITI->CITI
	電団・ Main、20011、200112 FFT Points・ 1.25k 12.5k 12.5k 250k占(上記範囲内の速形を 設定した FFT Points に
	Window: 毎形 ハニング フラットトップ
	Mode: Normal, Max Hold, Average
	また、コーザー定義演算オプション搭載時は、FFT の Type、Sub type として次の選択が可能。
	Type: LS, RS, PSD, CS, TF, CH
	Sub type : MAG、LOGMAG、PHASE、REAL、IMAG

	什样
リファレンス波形	REF1 お上だ REF2 の 2 つ (DI M2022 DI M2032 DI M2052 は REF1 の 1 つ) のリファレンス波形表
	「たけ 135 KO ハビ 2 0 2 9 (DEIM2022、 DEIM2032、 DEIM2032 な れに 1 0 1 9 7 9 7 9 7 7 7 アンベルバス
	7.7.2 PBE。 保存された波形または冬チャネルの波形を RFF1 または RFF2 にロード可能
	REF1 は MATH1 のトレースを REF2 は MATH2 のトレースを使用するため REF と MATH を同時
	には使用できたい、リファレンス波形を使用できる最大レコード長は、演算可能な最大レコード長
シリアルバス信号解析*3	ElexBay CAN CAN ED/ISO 11898-1:2015 または non-ISO) LIN CXPL SENT PSI5 Airbag
	HART 12C SPI コーザー定義のシリアルバス (User Define) のデータを解析し、表示可能
	画面に表示されている波形に対して、フレームやフィールドなどをデコードし、デコード結果と波
	形を画面に一緒に表示したり、デコード結果の詳細を一覧表示したりが可能。SENTと PSI5 Airbag
	はトレンド表示も可能。
	検索条件を設定して検索を行うことで、検索条件と一致したフレームやフィールド、データの先頭
	を中心に、波形を拡大表示することが可能。
	最大4つのシリアルバス信号について、波形の解析 / 検索ができる。(DLM2022、DLM2032、
	DLM2052はSerial Bus1の1つ)
ヒストリ波形の検索	設定した条件を満たす波形を検索し、条件を満たしたヒストリ波形だけを画面に表示するほか、そ
	れらの波形のタイムスタンプを一覧表示が可能。
	1つの方形ゾーンに入ることを検索条件として設定 (Simple) できるほか、4つ*4の条件が設定可能
	で、4 つ ^{*4} の AND または OR で検索が可能。
	検索基準は、対象波形が検索範囲に入る (IN)/ 外れる (OUT)/ 対象にしない (X) のいずれか。
	検索範囲の種類は次の4通りから選択可能。
	Rect-Zone: 方形ゾーン。FFT 波形は使用不可。
	Wave-Zone: 波形ソーン。XY 波形、FFT 波形は使用不可。
	Polygon-Zone: ホリコンソーン。FFT 波形は使用不可。
	Parameter · 波形ハフメータの測定項目の「つに対して判定範囲(上下限値)を設定。
波形の検索	表示されている波形を対象に、設定した条件と一致する固所を検索し、検索点を中心に拡大表示が
	り形。 地会」と検売符囲の中で早上 50000 ポイント まで検売可能
	「ALE U.C.快条戦団の中で取入 20000 小1 ノドよで快発可能。 Coarch 機能・
	Jedich 機能・ 現在な小されている次形の存足時間 (Jidi Folin) 以降の存足部力を快楽し デーム画面に表示 Start Point の設定範囲はも 5div
	Search Type : Edge Edge Oualified State Pulse Width State Width
	AT, AV, AT&AV, Marker, Degree
波形パラメータの自動測定	次の波形パラメータを自動測定が可能。
	・設定範囲全データが対象で、周期に無関係なアイテム。
	Max, Min, P-P, High, Low, Amplitude, Rms, Mean, Sdev, IntegTY+, IntegTY, +Over, -Over,
	Pulse Count、Edge Count
	・設定範囲の始めの1周期が対象のアイテム。
	Freq、Period、Burst、+Width、-Width、Duty、Rise、Fall、Delay
	・設定範囲の全周期が対象のアイテム。
	AvgFreq、AvgPeriod
	 ΔT & ΔV カーソル値
	ロシック信号に対して選択可能な項目。
	Freq、Period、AveFreq、Duty、Puise Count、Delay
	リイクルモートで有効な項目 May Min D.D. High Low Amplitude Pmc Maan Sday IntegTV: IntegTV: Over Over
	Max, Min, Fr, Tigri, Low, Amplitude, Mins, Mean, Sdev, Integrit, Integrit, Fovel, Over 両面に表示できるアイテム数は Arpa1 と Arpa2 と合わせて最大 30 アイテム
波形パラメータの統計処理	一回面になべてとなり「リム奴は、ハビロビハビロビロリビビ取べりの」「リム。
次 フィンファー アの小田 足上	Continuous: 通営の測定を複数回行った場合の統計処理。
	Cycle: 表示されている波形の1周期でとの測定に対する統計処理。
	History: 複数あるヒストリ波形の各測定に対する統計処理。
	統計処理結果は次のとおり。
	統計項目: Max、Min、Mean、 σ 、Count
波形パラメータのトレンド	指定した測定項目のトレンド、またはヒストグラムを最大2つ(DLM2022、DLM2032、DLM2052
表示 / ヒストグラム表示	は1つ) 表示可能。画面に表示できるアイテム数は最大9アイテム。
拡張パラメータ測定	2つの領域に対して波形パラメータの自動測定が可能。また、波形パラメータの自動測定値を使っ
	た演算も可能。
	通常のパラメータ測定範囲 (Area1) に加えて、もう 1 つの測定範囲 (Area2) を指定できる。
	Area2 では Area1 と同様のパラメータ測定ができるほか、Cycle モードの設定が可能。
	Lycle モードで測定できるアイテムは以下のとおり。
	Max, Min, Y-Y, High, Low, Kms, Mean, Sdev, Integ1Y+, Integ1Y, +Over, -Over
	」回答: 「「「」」」」の「「」」の「「」」の「「」」の「「」」の「「」」の「「」」の

項目	
頻度分布の解析	指定した領域内のデータの頻度をカウントし、ヒストグラム表示を行う。
	頻度をカウントするデータを電圧軸 / 時間軸から選択可能。
	ヒストグラムに対して、平均値、標準偏差、最大値、最小値、ピーク値、中間値などを測定できる。
	ヒストグラムの対象波形は、2 つまで (Hist1、Hist2) 設定できる (DLM2022、DLM2032、DLM2052
	は Hist1 の 1 つ)。
アクションオントリガ	トリガ成立時に所定の動作 (アクション) を実行可能。
	動作の回数を波形取り込み回数、または判定回数で指定。
	アクション: ビープ音、画面イメージデータの印刷 / 保存、波形データの保存、メールの送信 ^{*5}
GO/NO-GO 判定	GO/NO-GO 判定結果が NO-GO のときに所定の動作 (アクション) を実行可能。
	動作の回数を波形取り込み回数、または判定回数で指定。
	4つ ^{*4} の条件が設定可能で、4つ ^{*4} 条件の AND または OR で判定が可能。
	判定基準は、対象波形が判定範囲に入る (IN)/ 外れる (OUT)/ 対象にしない (X) のいずれか。
	検索範囲の種類は次の4通りから選択可能。
	Rect-Zone: 方形ゾーン。FFT 波形は使用不可。
	Wave-Zone: 波形ゾーン。XY 波形、FFT 波形は使用不可。
	Polygon-Zone: ポリゴンゾーン。FFT 波形は使用不可。
	Parameter: 波形パラメータの測定項目の1つに対して判定範囲 (上下限値)を設定。
	アクション
	ビープ音、画面イメージデータの印刷/保存、波形データの保存、メールの送信 *5
電源解析(オプション)	解析機能と電力測定機能のどちらかを選択して実行。
	解析機能:次の中の2つの解析を同時に実行。
	・ スイッチング損失解析 (SW Loss):
	トータル損失やスイッチング損失を測定可能。電力波形や測定値の画面表示や統計処理が可能。
	スイッチング損失で自動測定が可能な項目は次のとおり。
	Wp、Wp+、Wp–、Abs.Wp、P、P+、P–、Abs.P、Z
	・安全動作領域解析 (SOA):
	電圧入力を X 軸に、電流入力を Y 軸に取り、X-Y 表示可能。
	・ 高調波解析 (Harmonics):
	規格の限度値との簡易比較が可能。
	高調波電流エミッション「IEC 61000-3-2(Electromagnetic compatibility (EMC) - Part 3-2: Limits
	-Limits for harmonic current emissions (equipment input current ≦ 16 A per phase)) 第 2.2 版」
	EN 61000-3-2(2000)
	IEC 61000-4-7 第 2 版
	・ ジュール積分 (l ² t):
	ジュール積分波形や測定値の画面表示や統計処理が可能。ジュール積分で自動測定が可能な項目
	は次のとおり。
	l ² t
	電力測定機能:最大 2 つの回路の電力を同時に測定。
	自動測定が可能な項目は次のとおり。
	U+pk、U–pk、Up-p、Udc、Uac、Urms、Umn、Urmn、Avg Freg(電圧の)、I+pk、I–pk、Ip-p、
	ldc、lac、lrms、lmn、lrmn、Avg Freg(電流の)、S、P、Q、Z、λ、Wp、Wp+、Wp-、Abs.Wp、a、
	q+, q-, Abs.q
	ーー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	デスキュー調整信号源(別売アクセサリ:701936)から電圧チャネルに電圧信号を、電流チャネ
	ルに電流信号をプローブを介して入力して実行する機能。スキュー調整範囲については、前述の機
	能「スキュー調整」参照
*1 רבטבאום בבטנאום 1	

*1 DLM2022、DLM2032、DLM2052 は CH1、CH2

*2 DLM2022、DLM2032、DLM2052 は CH1、CH2、MATH1

*3 FlexRay、CAN、CAN FD、LIN、CXPI、SENT、PSI5、UART、I2C、SPIは4chモデルのオプション

*4 DLM2022、DLM2032、DLM2052は2つ

*5 イーサネットオプション付きの場合

5 仕様

内蔵プリンタ (オプション) 以下の出力形 	(式で画面イメージを印刷。)
	HardCopy	* 表示されている画面イメージを印刷。
	NOITIdi •	ながされている画面インゲーンの波が原域だりを印刷。ゲーユー ほわ M されない。 カーソル測定や自動測定結果が表示されている場合は、波形領域の下側に出力さ
	long :	れる。 時間動士向に2位。10位に拡土したイメージを印刷、メニューは印刷されたい。
	Long .	時間軸方向に21倍~10倍に拡入したイメージを印刷。メニューは印刷されない。 カーソル測定や自動測定結果が表示されている場合は、波形領域の下側に出力さ
		na。
USB プリンタ	 USB で外部ブ	。 リンタに画面イメージを出力。カラーの ON/OFF が可能。
	EPSON インク	7ジェットプリンタ、HP インクジェットプリンタに対応。
ネットワークプリンタ	イーサネット	* 経由で外部プリンタに画面イメージを出力。カラーの ON/OFF が可能。
	EPSON インク	7ジェットプリンタ、HP インクジェットプリンタ、HP レーザプリンタに対応。
ファイル	指定したスト	レージメディアに、以下の保存モードで画面イメージデータを保存。
	ストレージメ	ディアは内部メモリ、USB ストレージから選択可能。
	出力データ形	注は PNG、JPEG。カラー設定は OFF/ON/ON(Rev)/ON(Gray) が選択可能。
	HardCopy	:表示されている画面イメージを保存。
	Normal	表示されている画面イメージの波形領域だけを保存。メニューは保存されない。
		カーソル測定や自動測定結果が表示されている場合は、波形領域の下側に出力さ
		れる。
	Wide :	時間軸方向に2倍に拡大したイメージを保存。メニューは保存されない。
		カーソル測定や自動測定結果が表示されている場合は、波形領域の下側に出力さ
		na

画面イメージデータの印刷 / 保存

* イーサネットオプション付きの場合。

データの保存

波形データ	波形データ(ヒストリ波形を含む)を指定したストレージメディア ^{*1} に保存可能。また、本体への 読み込みが可能
	データ形式はバイナリ (wdf) または ASCII(csv) で、バイナリ (wdf) のみ本機器に読み込み可能。
	デーダ形式、保存対象波形、ヒストリの範囲、保存対象ワイントワ (Main、Zoom I、Zoom2)、圧縮方法 (OFF、P-P、Decimation) を指定して保存する。
	読み込み時は、ロード先を ACQ メモリ、REF1(MATH1)、REF2(MATH2) ^{*2} から選択して読み込む。 ACO メモリに読み込んだ場合は、次のデータ取り込みを開始すると読み込んだデータはクリアさ
	れる。
	設定データを指定したストレージメディア ^{*1} に保存可能。また、本体への読み込みが可能。
設定データ(ストア/リコー	設定データを3個まで内部メモリに記憶/呼び出し可能。
ル)	
その他のデータ	表示されている画面イメージの保存、波形ゾーンの保存 / 読み込み、ポリゴンゾーンの読み込み、
	スナップショット波形の保存/読み込み、波形パラメータの自動測定結果の保存、シリアルバスの
	解析結果の保存、FFT 波形データの保存、ヒストクラムのデータの保存 / 読み込みが可能。

*1 ストレージメディアは内部メモリ、USB ストレージのいずれかを選択可能。

*2 DLM2022、DLM2032、DLM2052 の場合は ACQ メモリまたは REF1(MATH1) からの選択。

その他

項目	仕様
デフォルトセットアップ	設定内容を工場出荷時の設定に戻す。
	ただし、日付・時刻の設定、通信インタフェースに関する設定、内部メモリに記憶させた設定、言
	語設定を除く。
	Undo により、初期化前の状態に戻すことが可能。
オートセットアップ	電圧軸、時間軸、トリガなどの設定を入力信号に最適な値に自動設定。
	Undo により、オートセットアップ前の状態に戻すことが可能。
シリアルバスオートセット	シリアルバスの種類 (FlexRay、CAN、CAN FD、LIN、CXPI、SENT、PSI5 Airbag、UART、I2C、SPI)
アップ*	とトリガソースを指定して、オートセットアップを実行可能。ビットレートやソースのレベルを自動
	的に設定してトリガをかけることが可能。
<u>キャリブレーション</u>	自動キャリブレーションとマニュアルキャリブレーションが可能。
環境設定	_日付・時刻、クリック音の ON/OFF、メッセージの言語を設定可能。
プローブ補償信号出力	フロントパネルのプローブ補償信号出力端子から信号 (約 1Vp-p、約 1kHz の方形波) を出力。
オーバービュー	本機器のシステムの状態を確認可能。
オプション追加ライセンス	トリガ、演算、解析のオプションを追加可能 (4ch モデルだけ)。
セルフテスト	_メモリテスト、確度テスト、キーテスト、プリンタテストが可能。
メニューの言語設定	メニューの言語を切り替え可能。
ヘルプ機能	設定内容の解説文を表示する。

* シリアルバスオプション付きの場合。

5.6 内蔵プリンタ (/B5 オプション)

項目	仕様
印字方式	サーマルラインドット方式
発熱素子分解能	8 ドット /mm
用紙幅	112mm

5.7 ストレージ

内部メモリ

項目	仕様	
メディアタイプ	SD メモリカード	
容量	標準モデル:	約 300MB
	/C8 オプション:	約 1.8GB
	/C9オプション:	約 7.2GB

USB ストレージ

項目	仕様
対応 USB ストレージ	USB Mass Storage Class Ver. 1.1 準拠のマスストレージデバイス
使用可能容量	2TB
	パーティション形式:MBR、フォーマット形式:FAT32/FAT16

* 「5.8 周辺機器接続用 USB」参照。

5.8 周辺機器接続用 USB

項目	仕様
コネクタ形式	USB タイプ A コネクタ (レセプタクル)
電気的・機械的仕様	USB Rev.2.0 準拠
対応転送規格	LS(Low Speed) モード (1.5Mbps)、FS(Full Speed) モード (12Mbps)、HS(High Speed) モード
	(480Mbps)
ポート数	2
供給電源	5V、500mA(各ポート)
対応デバイス	USB HID Class Ver1.1 準拠のマウス
	USB HID Class Ver1.1 準拠の 109 キーボード (Japanese)、104 キーボード (US)
	USB Printer Class Ver. 1.0 準拠の EPSON インクジェットプリンタ、HP インクジェットプリンタに
	対応。
	USB Mass Storage Class Ver. 1.1 準拠のマスストレージデバイス。
	USB HUB Device。
接続可能なデバイス数	ハブ: 各ポートに1
	マウス、キーボード、プリンタ: 各1
	マスストレージデバイス: 4
	ハブを含めて最大 6 デバイスまで接続可能

5.9 補助入出力部

外部トリガ入力 (TRIG IN)

項目	仕様
コネクタ形式	BNC
入力帯域*	$DC \sim 100MHz$
入力インピーダンス	約 1M Ω、約 20pF
最大入力電圧	± 40V(DC+ACpeak) または 28Vrms
	(1MHz 以上では 20dB/decade で± 5 V(DC+ACpeak) または 3.5Vrms まで低下)
入力レンジ	± 2V (DLM2024、DLM2034、DLM2054)
	± 1V (DLM2022、DLM2032、DLM2052 の± 1V レンジ)
	± 10V (DLM2022、DLM2032、DLM2052 の± 10V レンジ)
トリガレベル	± 2V、設定分解能は 5mV (DLM2024、DLM2034、DLM2054)
	± 1V、設定分解能は 5mV (DLM2022、DLM2032、DLM2052 の± 1V レンジ)
	± 10V、設定分解能は 50mV (DLM2022、DLM2032、DLM2052 の± 10V レンジ)

* 基準動作状態 (5.11 節参照) でウォームアップ時間経過後に測定した値です。

トリガアウト (TRIG OUT)

項目	仕様
コネクタ形式	BNC
出力レベル	3.3V CMOS
出力インピーダンス	約 50 Ω
出力論理形式	負論理、正論理切換可能
出力遅延時間	50ns max
出力保持時間	負論理時: Low レベル 800ns min、High レベル 50ns min
	正論理時: High レベル 800ns min、Low レベル 50ns min

プローブインタフェース端子

項目	仕様
出力端子数	DLM2022、DLM2032、DLM2052: 3
	DLM2024、DLM2034、DLM2054: 4
出力電圧	± 12V(リアパネルプローブパワー端子との合計で 1.2A まで)、± 5V(合計 800mA まで)
使用可能プローブ	アクティブプローブ (701912/701913/701914)、差動プローブ (701923/701924/701927)、
	電流プローブ (701928/701929)

プローブパワー端子 (/P2、/P4 オプション)

項目	仕様
出力端子数	DLM2022、DLM2032、DLM2052: 2 (/P2 オプション)
	DLM2024、DLM2034、DLM2054: 4 (/P4オプション)
出力電圧	± 12V(プローブインタフェース端子との合計で 1.2A まで)
使用可能なプローブ / デス	FET プローブ (700939)、電流プローブ (701930/701931/701932/701933)、差動プローブ (700924/
キュー調整信号源	700925/701920/701921/701922/701926)、デスキュー調整信号源 (701936)

GO/NO-GO 出力

項目	仕様
コネクタ形式	RJ-12 モジュラジャック
出力信号	GO OUT、NO-GO OUT
出力レベル	TTL 互換
適合ケーブル	4線式モジュラケーブル

ビデオ信号出力 (VIDEO OUT)

項目	仕様
コネクタ形式	D-Sub 15 ピン (レセプタクル)
出力形式	アナログ RGB 出力
出力解像度	準 XGA 出力 1024 × 768 ドット、約 60Hz Vsync(ドットクロック周波数 66MHz)

5.10 コンピュータインタフェース

GP-IB(オプション)

項目	仕様
電気的・機械的仕様	IEEE St'd 488-1978(JIS C 1901-1987) に準拠
機能的仕様	SH1、AH1、T6、L4、SR1、RL1、PP0、DC1、DT0、C0
プロトコル	IEEE St'd 488.2-1992 に準拠
使用コード	ISO(ASCII) コード
モード	アドレッサブルモード
アドレス	0~30のトーカ/リスナアドレスを設定可能
	SHIFT+CLEAR TRACE キーによりリモート状態の解除可能 (Local Lockout 時を除く)。

PC 接続用 USB

項目	仕様
コネクタ形式	USB タイプBコネクタ (レセプタクル)
電気的・機械的仕様	USB Rev. 2.0 準拠
対応転送規格	FS(Full Speed) モード (12Mbps)、HS(High Speed) モード (480Mbps)
ポート数	1
対応プロトコル	次の2種類のプロトコルのどちらか一方に対応するデバイスとして動作する。 USBTMC-USB488(USB Test and Measurement Class Ver. 1.0)* USB バスを使用し GP-IB コマンドを使用可能。 Mass Storage Class Ver.1.1 PC から本機器にアクセスして、本機器の内部メモリからのデータの読み込みだけ可能 (フォーマットなどの操作は不可)
対応システム環境	Windows 7(32bit、64bit)、Windows 8(32bit、64bit)、Windows 8.1(32bit、64bit)、または Windows 10(32bit、64bit) の日本語版または英語版が動作する PC

* 別途ドライバが必要です。

イーサネットインタフェース (/C10、/C11 オプション)

項目	仕様
コネクタ形状	RJ-45 コネクタ
ポート数	1
電気・機械的仕様	IEEE 802.3 準拠
伝送方式	Ethernet(1000BASE-T/100BASE-TX/10BASE-T)
通信プロトコル	TCP/IP
対応サービス	サーバー: FTP、HTTP(Web)、VXI-11
	クライアント: FTP(Net Drive)、SMTP(Mail)、SNTP、LPR(Net Print)、DHCP、DNS
対応システム環境	Windows 7(32bit、64bit)、Windows 8(32bit、64bit)、Windows 8.1(32bit、64bit)、または
	Windows 10(32bit、64bit) の日本語版または英語版が動作する PC

5.11 一般仕様

項目	仕様	
基準動作状態	周囲温度:	23 ± 5℃
	周囲湿度:	$55 \pm 10\%$ RH
	電源電圧 / 周波数の誤差:	定格の1%以内
ウォームアップ時間	30 分以上	
保存環境	温度:	$-20 \sim 60^{\circ}$ C
	湿度:	20 ~ 80%RH(結露しないこと)
	高度:	3000m 以下
動作環境	温度:	5 ~ 40°C
	湿度:	20 ~ 80%RH(プリンタ未使用時) (結露しないこと)
		35 ~ 80%RH(プリンタ使用時) (結露しないこと)
	高度:	2000m 以下
推奨校正周期	1年	
定格電源電圧	$100 \sim 240 \text{VAC}$	
電源電圧変動許容範囲	$90 \sim 264 \text{VAC}$	
定格電源周波数	50/60Hz	
電源周波数変動許容範囲	$48 \sim 63 \text{Hz}$	
電源ヒューズ	内蔵(交換不可)	
最大消費電力	170 VA(プリンタ使用時)	
耐電圧 (電源 - ケース間)	1.5kVAC、1 分間	
絶縁抵抗(電源-ケース間)	500VDC、10M Ω以上	
外形寸法	226 mm(W) × 293 mm (H) 3	× 193 mm(D)(プリンタカバー収納時、突起部を除く)
質量	約 4.2kg(オプション含まず)	
機器の冷却方法	強制空冷、左側面吸気、背面	ū排気
設置姿勢	水平	
バッテリバックアップ	時計を内蔵のリチウム電池で	<u> </u>
	電池寿命:約5年(周囲温度	[25℃時)

項目	仕様
安全規格	適合規格
	EN 61010-1
	過電圧カテゴリ II ^{*1}
	汚染度 2*2
	EN 61010-2-030
	測定カテゴリなし O(Other) ^{*3}
エミッション	適合規格
	EN 61326-1 Class A
	EN 61326-2-1
	EN 55011 Class A、Group 1
	オーストラリア、ニュージーランドの EMC 規制 EN 55011 Class A, Group 1
	韓国電磁波適合性基準 (한국 전자파적합성기준)
	(710105、710110、710115、710120、710125、710130、701938、701939、701913、
	701924、701928、701929、701988、701989(こ適用)
	EN 61000-3-2
	本製品はクラスA(工業環境用)の製品です。家庭環境においては、無線奶害を生することかあり、
	その場合には使用者か適切な対策を講することか必要となることかあります。
	ケーブル条件
	ロジック信号人力ボート
	ロシックフローフ用ケーフルの両端にフェライトコア (IDK:ZCAI2035-0930A、横河部品:
	別売の専用電源ケーノル B9852MD の庁隔(本体側) にノェライトコア (IDK:ZCAI1325-
	0530A、横河部品:A1181MN)を取り付けてくたさい。
	長さ 300 以下のオーザネット通信ゲーブルを使用してください。
	外部トリカ入力 (TRIG IN) 姉子
	長さ 3 M以下の BNC ケーフルを使用してくたさい。
	長さるM以下のBNCケーフルを使用してくたさい。 ビデナ伝見出す AUDECのUTX 増え
	とアオ信亏近刀(VIDEO OUI) 姉子
	たさ 311 以下の U-Sub I-SHII VGA ノールドケーノルを使用してくたさい。 国知機型は4月 UCD コラカム
	同辺(破路)(変形用 USD コイン / ダ
	たさ 3111以下り 0.35 ゲーブルの月 姉(本仲)例)をノエ ノオ ドコノ(IDK・2CA12035-0930A、 供売取日・A1100ABバビュン回済上 ブ取り付けオブ ださい(て回会取)
	(規刈印面:AT1900MN に 2 凹通して取り付けててたさい(下凶参照)。 DC 逆装田 LIG コラカカ
	FC 技術用 030 コインタ ニキン 3m 以下の USB ケーブルの世世(太休側)をフィライトコア (TDK・7CAT2025.0020A
	度で30円以下の305/02000~1000円細(本体例)をノエンイドコン(10K-2CA12035-0500A、 横河如果・A1100AND(こ2回通上ブ取り付けアイださい(下図会昭)
	3.5.7.6.0 (D)/14.1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
	フェライトコア (TDK・7CAT2035-0930A) 横河部島・A1190MM) に 2 回通して取り付けてく

- *1 過電圧カテゴリ(設置カテゴリ)は、過渡的な過電圧を定義する数値であり、インパルス耐電圧の規定を含みます。過電圧カ テゴリⅡは配電盤などの固定設備から給電される電気機器に適用されます。
- *2 汚染度とは、耐電圧または表面抵抗率を低下させる固体、液体、気体の付着の程度に関するものです。汚染度2は通常の室 内雰囲気(非導通性汚染)だけに適用されます。
- *3 本機器の測定入力端子の測定カテゴリはなし「O(Other)」です。主電源の測定、または測定カテゴリⅡ、Ⅲ、およびⅣ内の測 定に本機器を使用しないでください。 測定カテゴリなしOは、主電源に直接接続していない回路の測定に適用されます。コンセントからトランスなどを経由した 機器内の2次側の電気回路の測定に適用されます。本機器の測定入力端子への印加が予想される過渡的な過電圧は1500Vです。 測定カテゴリⅡは、家庭用電気製品や携帯電気工具など、低電圧設備に直接接続された回路の測定に適用されます。 測定カテゴリⅢは、配電盤や回路遮断器など、建造物設備の回路の測定に適用されます。

測定カテゴリ Ⅳ は、建造物への引き込み線やケーブル系統など、低電圧設備への供給源の回路の測定に適用されます。

項目	仕様										
イミュニティ	適合規格										
	EN 61326-1 Table 2 (工業立地用)										
	EN 61326-2-1										
	(710105、710110、710115、710120、710125、710130、701938、701939、701913、701924、										
	701928、701929、701988、701989 に適用)										
	イミュニティ試験環境における影響度(判定A条件)										
	ノイズ増加: 土 200mV の範囲以内 (701938、701939 使用時)										
	土 2V の範囲以内 (701913、701924 使用時)										
	土 1A の範囲以内 (701928、701929 使用時)										
	ロジック信号の極性反転が発生しないこと (701988、701989 使用時)										
	試験条件: 701913 使用時										
	1.25GS/s、エンベロープモード、20MHzBWL、プローブの減衰比の設定										
	(Probe)10:1、プローブ先端を 50 Ωにて終端										
	701924 使用時										
	1.25GS/s、エンベロープモード、20MHzBWL、プローブの減衰比の設定										
	(Probe)\50:1、プローブ先端を 50 Ωにて終端										
	701928、701929 使用時										
	1.25GS/s、エンベロープモード、20MHzBWL、プローブの減衰比の設定										
	(Probe)10A:1V、プローブ先端を 50 Ωにて終端										
	701988、701989 使用時										
	1.25GS/s、エンベロープモード、プローブ先端を 50 Ωにて終端										
	ケーブル条件:エミッションのケーブル条件と同じです。										
	試験項目: 1.静電気放電:EN 61000-4-2										
	気中放電± 8kV、接触放電± 4kV、判定 B										
	2. 放射イミュニティ:EN 61000-4-3										
	80M ~ 1GHz 、 10V/m、 1.4G ~ 2GHz、 3V/m、 2.0G ~ 2.7GHz、 3V/m、 判定 A										
	3. 伝導イミュニティ:EN 61000-4-6										
	3V、判定 A										
	4. 高速過渡バースト:EN 61000-4-4										
	電源ライン± 2kV、信号ライン± 1kV、判定 B										
	5. 電源周波数磁界:EN 61000-4-8										
	30A/m、50Hz、判定 A										
	6. 雷サージイミュニティ:EN 61000-4-5										
	線間土 1kV、コモン土 2kV、判定 B										
	7. 電圧ディップ & 瞬停:EN 61000-4-11										
	1 サイクル、両極性、100%、判定 B										
	その他、判定C										
	判定条件 A/B/C の定義										
	判定 A: 試験中、上記「イミュニティ環境における影響度」を満たします。										
	判定 B: 試験中、機能の停止または制御不能になりません。動作モードが変										
	わったり永続的なデータの変化がありません。										
	判定 C: 試験中、操作やシステムリセットを要する機能または性能の、一時										
	的な低下または欠落が発生しました。										
環境規制規格	適合規格										
	EN 50581 産業用を含む監視及び制御機器										

5.12 外形図

本体

単位:mm

指示無き寸法公差は、±3%(ただし10mm 未満は±0.3mm)とする。

背面図

5

付録

付録1 時間軸設定 / サンプルレート / レコード長の関係

レコード長が 1.25k ポイントの場合

(全モデルで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

設定	高分解能モード OFF 時								高分解能モード ON 時								
	イン	タリーブ	モードO	FF 時	イン	タリーブ	モードの	DN 時	インタリーブモード OFF 時 インタリーブモード ON 時								
$ \rangle$	Rea	Itime	Intpl	/Rep	Rea	Realtime		/Rep	Rea	ltime	Intpl	/Rep	Rea	Itime	Intpl	/Rep	
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	
Time/div	レート	長の小	レート	長のい	レート	長の小	レート	長の小	レート	長	レート	長い。	レート	長の小	レート	長	
	(S/s)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)	
500s	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K	
200s	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	
100s	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	
50s	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	
20s	50	10k	50	10k	50	10k	50	10k	50	10k	50	10k	50	10k	50	10k	
10s	50	5k	50	5k	50	5k	50	5k	50	5k	50	5k	50	5k	50	5k	
5s	50	2.5k	50	2.5k	50	2.5k	50	2.5k	50	2.5k	50	2.5k	50	2.5k	50	2.5k	
2s	62.5	1.25k	62.5	1.25k	62.5	1.25k	62.5	1.25k	62.5	1.25k	62.5	1.25k	62.5	1.25k	62.5	1.25k	
1s	125	1.25k	125	1.25k	125	1.25k	125	1.25k	125	1.25k	125	1.25k	125	1.25k	125	1.25k	
500ms	250	1.25k	250	1.25k	250	1.25k	250	1.25k	250	1.25k	250	1.25k	250	1.25k	250	1.25k	
200ms	625	1.25k	625	1.25k	625	1.25k	625	1.25k	625	1.25k	625	1.25k	625	1.25k	625	1.25k	
100ms	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	1.25k	
50ms	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	2.5k	1.25k	
20ms	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	6.25k	1.25k	
10ms	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	
5ms	25k	1.25k	25k	1.25k	25k	1.25k	25k	1.25k	25k	1.25k	25k	1.25k	25k	1.25k	25k	1.25k	
2ms	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	62.5k	1.25k	
1ms	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	
500µs	250k	1.25k	250k	1.25k	250k	1.25k	250k	1.25k	250k	1.25k	250k	1.25k	250k	1.25k	250k	1.25k	
200µs	625k	1.25k	625k	1.25k	625k	1.25k	625k	1.25k	625k	1.25k	625k	1.25k	625k	1.25k	625k	1.25k	
100µs	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	
50µs	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	2.5M	1.25k	
20µs	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	
10µs	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	12.5M	1.25k	
5µs	25M	1.25k	25M	1.25k	25M	1.25k	25M	1.25k	25M	1.25k	25M	1.25k	25M	1.25k	25M	1.25k	
2µs	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	62.5M	1.25k	
1µs	125M	1.25k	125M	1.25k	125M	1.25k	125M	1.25k	125M	1.25k	125M	1.25k	125M	1.25k	125M	1.25k	
500ns	250M	1.25k	250M	1.25k	250M	1.25k	250M	1.25k	250M	1.25k	250M	1.25k	250M	1.25k	250M	1.25k	
200ns	625M	1.25k	625M	1.25k	625M	1.25k	625M	1.25k	625M	1.25k	625M	1.25k	625M	1.25k	625M	1.25k	
100ns	1.25G	1.25k	1.25G	1.25k	1.25G	1.25k	1.25G	1.25k	625M	625	1.25G	1.25k	1.25G	1.25k	1.25G	1.25k	
50ns	1.25G	625	2.5G	1.25k	2.5G	1.25k	2.5G	1.25k	625M	312.5	2.5G	1.25k	1.25G	625	2.5G	1.25k	
20ns	1.25G	250	6.25G	1.25k	2.5G	500	6.25G	1.25k	625M	125	6.25G	1.25k	1.25G	250	6.25G	1.25k	
10ns	1.25G	125	12.5G	1.25k	2.5G	250	12.5G	1.25k	625M	62.5	12.5G	1.25k	1.25G	125	12.5G	1.25k	
5ns	1.25G	62.5	25G	1.25k	2.5G	125	25G	1.25k	625M	31.25	25G	1.25k	1.25G	62.5	25G	1.25k	
2ns	1.25G	25	62.5G	1.25k	2.5G	50	62.5G	1.25k	625M	12.5	62.5G	1.25k	1.25G	25	62.5G	1.25k	
1ns	1.25G	12.5	125G	1.25k	2.5G	25	125G	1.25k	625M	6.25	125G	1.25k	1.25G	12.5	125G	1.25k	

太枠以外は、実時間サンプリングモード (Realtime) です。

: ロールモード

付録

付録1 時間軸設定 / サンプルレート / レコード長の関係

レコード長が 12.5k ポイントの場合

(全モデルで選択可能)

N	1		-			· n+		-									
\設定	(2)			プ解能せ				NI 0+									
$ \rangle$		<u>y </u>		11-1 時	12	<u>タリーノ</u>				<u>ダリーノ</u>		FF 時	12	<u> ダリーノ</u>		/// 時	
	Rea				Rea	itime	ー Intpi	/Rep	Rea		Intpl サンプル	/Rep	Rea			/Rep	
						レコート 長						レコート 長				レコート 長	
Time/div	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	(S/s)	(ポイント)	
500s	50	250k	50	250k	50	250k	50	250k	50	250k	50	250k	50	250k	50	250k	
200s	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	50	100k	
100s	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	50	50k	
50s	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	50	25k	
20s	62.5	12.5k	62.5	12.5k	62.5	12.5k	62.5	12.5k	62.5	12.5k	62.5	12.5k	62.5	12.5k	62.5	12.5k	
10s	125	12.5k	125	12.5k	125	12.5k	125	12.5k	125	12.5k	125	12.5k	125	12.5k	125	12.5k	
5s	250	12.5k	250	12.5k	250	12.5k	250	12.5k	250	12.5k	250	12.5k	250	12.5k	250	12.5k	
2s	625	12.5k	625	12.5k	625	12.5k	625	12.5k	625	12.5k	625	12.5k	625	12.5k	625	12.5k	
1s	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	1.25k	12.5k	
500ms	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	2.5k	12.5k	
200ms	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	6.25k	12.5k	
100ms	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	12.5k	
50ms	25k	12.5k	25k	12.5k	25k	12.5k	25k	12.5k	25k	12.5k	25k	12.5k	25k	12.5k	25k	12.5k	
20ms	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	62.5k	12.5k	
10ms	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	
5ms	250k	12.5k	250k	12.5k	250k	12.5k	250k	12.5k	250k	12.5k	250k	12.5k	250k	12.5k	250k	12.5k	
2ms	625k	12.5k	625k	12.5k	625k	12.5k	625k	12.5k	625k	12.5k	625k	12.5k	625k	12.5k	625k	12.5k	
1ms	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	
500us	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	2.5M	12.5k	
200us	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	
100us	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	
50µs	25M	12.5k	25M	12.5k	25M	12.5k	25M	12.5k	25M	12.5k	25M	12.5k	25M	12.5k	25M	12.5k	
20µs	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	62.5M	12.5k	
10µs	125M	12.5k	125M	12.5k	125M	12.5k	125M	12.5k	125M	12.5k	125M	12.5k	125M	12.5k	125M	12.5k	
5µs	250M	12.5k	250M	12.5k	250M	12.5k	250M	12.5k	250M	12.5k	250M	12.5k	250M	12.5k	250M	12.5k	
2µs	625M	12.5k	625M	12.5k	625M	12.5k	625M	12.5k	625M	12.5k	625M	12.5k	625M	12.5k	625M	12.5k	
1µs	1.25G	12.5k	1.25G	12.5k	1.25G	12.5k	1.25G	12.5k	625M	6.25k	1.25G	12.5k	1.25G	12.5k	1.25G	12.5k	
500ns	1.25G	6.25k	2.5G	12.5k	2.5G	12.5k	2.5G	12.5k	625M	3.125k	2.5G	12.5k	1.25G	6.25k	2.5G	12.5k	
200ns	1.25G	2.5k	6.25G	12.5k	2.5G	5k	6.25G	12.5k	625M	1.25k	6.25G	12.5k	1.25G	2.5k	6.25G	12.5k	
100ns	1.25G	1.25k	12.5G	12.5k	2.5G	2.5k	12.5G	12.5k	625M	625	12.5G	12.5k	1.25G	1.25k	12.5G	12.5k	
50ns	1.25G	625	25G	12.5k	2.5G	1.25k	25G	12.5k	625M	312.5	25G	12.5k	1.25G	625	25G	12.5k	
20ns	1.25G	250	62.5G	12.5k	2.5G	500	62.5G	12.5k	625M	125	62.5G	12.5k	1.25G	250	62.5G	12.5k	
10ns	1.25G	125	125G	12.5k	2.5G	250	125G	12.5k	625M	62.5	125G	12.5k	1.25G	125	125G	12.5k	
5ns	1.25G	62.5	125G	6.25k	2.5G	125	125G	6.25k	625M	31.25	125G	6.25k	1.25G	62.5	125G	6.25k	
2ns	1.25G	25	125G	2.5k	2.5G	50	125G	2.5k	625M	12.5	125G	2.5k	1.25G	25	125G	2.5k	
1ns	1.25G	12.5	125G	1.25k	2.5G	25	125G	1.25k	625M	6.25	125G	1.25k	1.25G	12.5	125G	1.25k	

太枠以外は、実時間サンプリングモード (Realtime) です。

レコード長が 125k ポイントの場合

(全モデルで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	設定	高分解能モード OFF 時								高分解能モード ON 時							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		イン	タリーブ	モードの)FF 時	イン	タリーブ	モード C)N 時	イン	タリーブ	モードの	FF 時	イン	タリーブ	`モード C)N 時
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \rangle$	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl	/Rep	Rea	Itime	Intpl	/Rep	Rea	ltime	Intpl	/Rep
Immedia $L-h$ E $L-h$ <		サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード
Initiative (S/S) (3/4 / YF) (S/S) <th< td=""><td>Time/div</td><td>レート</td><td>長</td><td>レート</td><td>長</td><td>レート</td><td>長</td><td>レート</td><td>長(ポムル)</td><td>レート</td><td>長</td><td>レート</td><td>長</td><td>レート</td><td>長</td><td>レート</td><td>長</td></th<>	Time/div	レート	長	レート	長	レート	長	レート	長(ポムル)	レート	長	レート	長	レート	長	レート	長
Store 250k 50 250k 125k 62.5 125k 62.5 125k 62.5 125k 62.5 125k 125k <t< td=""><td>500.</td><td>(S/S)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(5/5)</td><td>(ホイント)</td><td>(S/s)</td><td>(ホイント)</td></t<>	500.	(S/S)	(ホイント)	(5/5)	(ホイント)	(5/5)	(ホイント)	(5/5)	(ホイント)	(5/5)	(ホイント)	(5/5)	(ホイント)	(5/5)	(ホイント)	(S/s)	(ホイント)
200s 62.5 125k	500s	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K	50	250K
100s 125 125k	200s	62.5	125K	62.5	125K	62.5	125K	62.5	125K	62.5	125K	62.5	125K	62.5	125K	62.5	125K
50s 250 125k	100s	125	125k	125	125k	125	125k	125	125k	125	125k	125	125k	125	125k	125	125k
20s 625 125k 125k <td>50s</td> <td>250</td> <td>125k</td>	50s	250	125k	250	125k	250	125k	250	125k	250	125k	250	125k	250	125k	250	125k
10s 1.25k 125k <	20s	625	125k	625	125k	625	125k	625	125k	625	125k	625	125k	625	125k	625	125k
5s 2.5k 125k <	10s	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k	1.25k	125k
2s 6.25k 125k	5s	2.5k	125k	2.5k	125k	2.5k	125k	2.5k	125k	2.5k	125k	2.5k	125k	2.5k	125k	2.5k	125k
1s 12.5k 125k 12.5k 12.5	2s	6.25k	125k	6.25k	125k	6.25k	125k	6.25k	125k	6.25k	125k	6.25k	125k	6.25k	125k	6.25k	125k
500mg 25k 125k	1s	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k	12.5k	125k
	500ms	25k	125k	25k	125k	25k	125k	25k	125k	25k	125k	25k	125k	25k	125k	25k	125k
200ms 62.5k 125k	200ms	62.5k	125k	62.5k	125k	62.5k	125k	62.5k	125k	62.5k	125k	62.5k	125k	62.5k	125k	62.5k	125k
100ms 125k 125k 125k 125k 125k 125k 125k 125k	100ms	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k	125k
50ms 250k 125k 250k 250k 250k 250k 250k 250k 250k 2	50ms	250k	125k	250k	125k	250k	125k	250k	125k	250k	125k	250k	125k	250k	125k	250k	125k
20ms 625k 125k	20ms	625k	125k	625k	125k	625k	125k	625k	125k	625k	125k	625k	125k	625k	125k	625k	125k
10ms 1.25M 125k	10ms	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k
5ms 2.5M 125k	5ms	2.5M	125k	2.5M	125k	2.5M	125k	2.5M	125k	2.5M	125k	2.5M	125k	2.5M	125k	2.5M	125k
2ms 6.25M 125k	2ms	6.25M	125k	6.25M	125k	6.25M	125k	6.25M	125k	6.25M	125k	6.25M	125k	6.25M	125k	6.25M	125k
1ms 12.5M 125k 12.5M 1	1ms	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k
500µs 25M 125k 125K 125K 125K 25M 125k 25M 125k 25M 125k 25M 125k 25M 125k	500µs	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k
200µs 62.5M 125k	200µs	62.5M	125k	62.5M	125k	62.5M	125k	62.5M	125k	62.5M	125k	62.5M	125k	62.5M	125k	62.5M	125k
100µs 125M 125K 125M	100µs	125M	125k	125M	125k	125M	125k	125M	125k	125M	125k	125M	125k	125M	125k	125M	125k
50µs 250M 125k	50µs	250M	125k	250M	125k	250M	125k	250M	125k	250M	125k	250M	125k	250M	125k	250M	125k
20µs 625M 125k	20µs	625M	125k	625M	125k	625M	125k	625M	125k	625M	125k	625M	125k	625M	125k	625M	125k
10µs 1.25G 125k 1.25G 125k 1.25G 125k 1.25G 125k 1.25G 125k 625M 62.5k 1.25G 125k 1.25G 125k 1.25G 125k 1.25G 125k	10µs	1.25G	125k	1.25G	125k	1.25G	125k	1.25G	125k	625M	62.5k	1.25G	125k	1.25G	125k	1.25G	125k
5µs 1.25G 62.5k 2.5G 125k 2.5G 125k 2.5G 125k 2.5G 125k 625M 31.25k 2.5G 125k 1.25G 62.5k 2.5G 125k	5µs	1.25G	62.5k	2.5G	125k	2.5G	125k	2.5G	125k	625M	31.25k	2.5G	125k	1.25G	62.5k	2.5G	125k
2µs 1.25G 25k 6.25G 125k 2.5G 50k 6.25G 125k 625M 12.5k 6.25G 125k 1.25G 25k 6.25G 125k	2µs	1.25G	25k	6.25G	125k	2.5G	50k	6.25G	125k	625M	12.5k	6.25G	125k	1.25G	25k	6.25G	125k
1µs 1.25G 12.5k 12.5G 125k 2.5G 25k 12.5G 125k 625M 6.25k 12.5G 125k 1.25G 12.5k 12.5G 12.5k 1.25G 12.5k 12.5G 12.5k 12.5K 12.5G 12.5k 12.	1µs	1.25G	12.5k	12.5G	125k	2.5G	25k	12.5G	125k	625M	6.25k	12.5G	125k	1.25G	12.5k	12.5G	125k
500ns 1.25G 6.25k 25G 125k 2.5G 12.5k 25G 125k 625M 3.125k 25G 125k 1.25G 6.25k 25G 125k	500ns	1.25G	6.25k	25G	125k	2.5G	12.5k	25G	125k	625M	3.125k	25G	125k	1.25G	6.25k	25G	125k
200ns 1.25G 2.5k 62.5G 125k 2.5G 5k 62.5G 125k 62.5G 125k 625M 1.25k 62.5G 125k 1.25G 2.5k 62.5G 125k	200ns	1.25G	2.5k	62.5G	125k	2.5G	5k	62.5G	125k	625M	1.25k	62.5G	125k	1.25G	2.5k	62.5G	125k
100ns 1.25G 1.25K 125G 125K 2.5G 2.5K 125G 125K 625M 625 125G 125K 1.25G 1.25K 1.25G 1.25K 125G 125K	100ns	1.25G	1.25k	125G	125k	2.5G	2.5k	125G	125k	625M	625	125G	125k	1.25G	1.25k	125G	125k
50ns 1.25G 625 125G 62.5k 2.5G 1.25K 125G 62.5k 625M 312.5 125G 62.5k 1.25G 62.5k 1.25G 62.5k	50ns	1.25G	625	125G	62.5k	2.5G	1.25k	125G	62.5k	625M	312.5	125G	62.5k	1.25G	625	125G	62.5k
20ns 1 25G 250 125G 25k 2 5G 500 125G 25k 625M 125 125G 25k 1 25G 250 125G 25k	20ns	1 25G	250	125G	25k	2 5G	500	125G	25k	625M	125	125G	25k	1 25G	250	125G	25k
10ns 1 25G 125 125G 12 5k 2 5G 250 125G 12 5k 625M 62 5 125G 12 5k 1 25G 125 125G 12 5k	10ns	1.25G	125	125G	12.5k	2.5G	250	125G	12.5k	625M	62.5	125G	12.5k	1 25G	125	125G	12.5k
5ns 1 25G 62 5 125G 6 25k 2 5G 125 125G 6 25k 625M 31 25 125G 6 25k 1 25G 62 5 125G 6 25k	505	1.25G	62.5	125G	6 25k	2.5G	125	125G	6 25k	625M	31.25	125G	6 25k	1 25G	62.5	125G	6 25k
2ns 1.256 02.5 1256 2.5k 2.56 50 1256 2.5k 625M 12.5 1256 0.25k 1.256 02.5 1256 2.5	200	1.250	25	1250	2.5k	2.50	50	1250	2.5k	625M	12.5	1250	2.5k	1.250	25	1250	2.5k
1 ns 1 25G 12 5 125G 1 25k 2 5G 25 125G 1 25k 625M 6 25 125G 1 25k 1 25G 12 5 125G 1 25k	1ne	1.250	12.5	125G	1 25k	2.50	25	1250	1.25k	625M	6 25	1250	1.25k	1.250	12.5	1250	1.25k

太枠以外は、実時間サンプリングモード (Realtime) です。

: ロールモード

付録

付録1 時間軸設定 / サンプルレート / レコード長の関係

レコード長が 1.25M ポイントの場合

(全モデルで選択可能)

									Kep 寺恤時間サンノリングモート								
設定			高	分解能モ	ード OFF	時			高分解能モード ON 時								
$ \rangle$	イン	タリーブ	モードロ)FF 時	イン	タリーブ	<u>(モード C</u>	DN 時	イン	タリーブ	モードの	FF 時	インタリーブモード ON 時				
	Rea	Itime	Intpl	/Rep	Rea	Itime	Intpl	/Rep	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl/Rep		
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	
Time/div	レート	長			レート	長		長		長		長	レート	長	レート	長	
	(S/s)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)	
500s	250	1.25M	250	1.25M	250	1.25M	250	1.25M	250	1.25M	250	1.25M	250	1.25M	250	1.25M	
200s	625	1.25M	625	1.25M	625	1.25M	625	1.25M	625	1.25M	625	1.25M	625	1.25M	625	1.25M	
100s	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	1.25k	1.25M	
50s	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	2.5k	1.25M	
20s	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	6.25k	1.25M	
10s	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	12.5k	1.25M	
5s	25k	1.25M	25k	1.25M	25k	1.25M	25k	1.25M	25k	1.25M	25k	1.25M	25k	1.25M	25k	1.25M	
2s	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	62.5k	1.25M	
1s	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	125k	1.25M	
500ms	250k	1.25M	250k	1.25M	250k	1.25M	250k	1.25M	250k	1.25M	250k	1.25M	250k	1.25M	250k	1.25M	
200ms	625k	1.25M	625k	1.25M	625k	1.25M	625k	1.25M	625k	1.25M	625k	1.25M	625k	1.25M	625k	1.25M	
100ms	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	1.25M	
50ms	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	2.5M	1.25M	
20ms	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	
10ms	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	
5ms	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	
2ms	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	62.5M	1.25M	
1ms	125M	1.25M	125M	1.25M	125M	1.25M	125M	1.25M	125M	1.25M	125M	1.25M	125M	1.25M	125M	1.25M	
500µs	250M	1.25M	250M	1.25M	250M	1.25M	250M	1.25M	250M	1.25M	250M	1.25M	250M	1.25M	250M	1.25M	
200µs	625M	1.25M	625M	1.25M	625M	1.25M	625M	1.25M	625M	1.25M	625M	1.25M	625M	1.25M	625M	1.25M	
100µs	1.25G	1.25M	1.25G	1.25M	1.25G	1.25M	1.25G	1.25M	625M	625k	1.25G	1.25M	1.25G	1.25M	1.25G	1.25M	
50µs	1.25G	625k	2.5G	1.25M	2.5G	1.25M	2.5G	1.25M	625M	312.5k	2.5G	1.25M	1.25G	625k	2.5G	1.25M	
20µs	1.25G	250k	6.25G	1.25M	2.5G	500k	6.25G	1.25M	625M	125k	6.25G	1.25M	1.25G	250k	6.25G	1.25M	
10µs	1.25G	125k	12.5G	1.25M	2.5G	250k	12.5G	1.25M	625M	62.5k	12.5G	1.25M	1.25G	125k	12.5G	1.25M	
5µs	1.25G	62.5k	25G	1.25M	2.5G	125k	25G	1.25M	625M	31.25k	25G	1.25M	1.25G	62.5k	25G	1.25M	
2µs	1.25G	25k	62.5G	1.25M	2.5G	50k	62.5G	1.25M	625M	12.5k	62.5G	1.25M	1.25G	25k	62.5G	1.25M	
1µs	1.25G	12.5k	125G	1.25M	2.5G	25k	125G	1.25M	625M	6.25k	125G	1.25M	1.25G	12.5k	125G	1.25M	
500ns	1.25G	6.25k	125G	625k	2.5G	12.5k	125G	625k	625M	3.125k	125G	625k	1.25G	6.25k	125G	625k	
200ns	1.25G	2.5k	125G	250k	2.5G	5k	125G	250k	625M	1.25k	125G	250k	1.25G	2.5k	125G	250k	
100ns	1.25G	1.25k	125G	125k	2.5G	2.5k	125G	125k	625M	625	125G	125k	1.25G	1.25k	125G	125k	
50ns	1.25G	625	125G	62.5k	2.5G	1.25k	125G	62.5k	625M	312.5	125G	62.5k	1.25G	625	125G	62.5k	
20ns	1.25G	250	125G	25k	2.5G	500	125G	25k	625M	125	125G	25k	1.25G	250	125G	25k	
10ns	1.25G	125	125G	12.5k	2.5G	250	125G	12.5k	625M	62.5	125G	12.5k	1.25G	125	125G	12.5k	
5ns	1.25G	62.5	125G	6.25k	2.5G	125	125G	6.25k	625M	31.25	125G	6.25k	1.25G	62.5	125G	6.25k	
2ns	1 25G	25	1256	2.5k	2.5G	50	1256	2.5k	625M	12.5	1256	2.5k	1 25G	25	1256	2.5k	
1ne	1 25G	12.5	1256	1 25k	2.5G	25	1256	1.25k	625M	6 25	1256	1 25k	1 25G	12.5	1256	1 25k	
1113	1.200	12.0	1.200	1.201	100		1200	1.200	1020101	0.20	1200	1.201	1.200	12.0	1200	1.200	

太枠以外は、実時間サンプリングモード (Realtime) です。

レコード長が 6.25M ポイントの場合

(メモリオプションなし、または /M1(S) オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

			高分解能モード ON 時 *1								
インタリーブモード OFF 時 インタリーブ	モード ON 時	イン	インタリーブモード OFF 時 インタリーブモード ON 時								
Realtime Intpl/Rep *2 Realtime	Intpl/Rep *2	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl	/Rep		
↓ サンプル レコード サンプル レコード サンプル レコード	サンプル レコー	ドサンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード		
	レート 長		長	レート	長	レート	長	レート	長		
	(S/S) (ホイン	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)	(S/s)	(ホイント)		
500s 1.25k 6.25M 1.25k 6.25M 1.25k 6.25M	1.25k 6.25N	1 1.25k	6.25M	1.25k	6.25M	1.25k	6.25M	1.25k	6.25M		
200s 3.125k 6.25M 3.125k 6.25M 3.125k 6.25M	3.125k 6.25N	1 3.125k	6.25M	3.125k	6.25M	3.125k	6.25M	3.125k	6.25M		
100s 6.25k 6.25M 6.25k 6.25M 6.25K 6.25M	6.25k 6.25N	1 6.25k	6.25M	6.25k	6.25M	6.25k	6.25M	6.25k	6.25M		
50s 12.5k 6.25M 12.5k 6.25M 12.5k 6.25M	12.5k 6.25N	1 12.5k	6.25M	12.5k	6.25M	12.5k	6.25M	12.5k	6.25M		
20s 31.25k 6.25M 31.25k 6.25M 31.25k 6.25M	31.25k 6.25N	1 31.25k	6.25M	31.25k	6.25M	31.25k	6.25M	31.25k	6.25M		
10s 62.5k 6.25M 62.5k 6.25M 62.5k 6.25M	62.5k 6.25N	1 62.5k	6.25M	62.5k	6.25M	62.5k	6.25M	62.5k	6.25M		
5s 125k 6.25M 125k 6.25M 125k 6.25M	125k 6.25N	1 125k	6.25M	125k	6.25M	125k	6.25M	125k	6.25M		
2s 312.5k 6.25M 312.5k 6.25M 312.5k 6.25M	312.5k 6.25N	1 312.5k	6.25M	312.5k	6.25M	312.5k	6.25M	312.5k	6.25M		
1s 625k 6.25M 625k 6.25M 625k 6.25M	625k 6.25N	1 625k	6.25M	625k	6.25M	625k	6.25M	625k	6.25M		
500ms 1.25M 6.25M 1.25M 6.25M 1.25M 6.25M	1.25M 6.25N	1 1.25M	6.25M	1.25M	6.25M	1.25M	6.25M	1.25M	6.25M		
200ms 3.125M 6.25M 3.125M 6.25M 3.125M 6.25M	3.125M 6.25M	1 3.125M	6.25M	3.125M	6.25M	3.125M	6.25M	3.125M	6.25M		
100ms 6.25M 6.25M 6.25M 6.25M 6.25M 6.25M	6.25M 6.25N	1 6.25M	6.25M	6.25M	6.25M	6.25M	6.25M	6.25M	6.25M		
50ms 12.5M 6.25M 12.5M 6.25M 12.5M 6.25M	12.5M 6.25M	1 12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M		
20ms 31.25M 6.25M 31.25M 6.25M 31.25M 6.25M	31.25M 6.25M	1 31.25M	6.25M	31.25M	6.25M	31.25M	6.25M	31.25M	6.25M		
10ms 62.5M 6.25M 62.5M 6.25M 6.25M 6.25M	62.5M 6.25M	1 62.5M	6.25M	62.5M	6.25M	62.5M	6.25M	62.5M	6.25M		
5ms 125M 6.25M 125M 6.25M 125M 6.25M	125M 6.25N	1 125M	6.25M	125M	6.25M	125M	6.25M	125M	6.25M		
2ms 312.5M 6.25M 312.5M 6.25M 312.5M 6.25M	312.5M 6.25M	1 312.5M	6.25M	312.5M	6.25M	312.5M	6.25M	312.5M	6.25M		
1ms 625M 6.25M 625M 6.25M 625M 6.25M	625M 6.25N	1 625M	6.25M	625M	6.25M	625M	6.25M	625M	6.25M		
500µs 1.25G 6.25M 1.25G 6.25M 1.25G 6.25M	1.25G 6.25M	1 625M	3.125M	1.25G	6.25M	1.25G	6.25M	1.25G	6.25M		
200µs 1.25G 2.5M 3.125G 6.25M 2.5G 5M	3.125G 6.25N	1 625M	1.25M	3.125G	6.25M	1.25G	2.5M	3.125G	6.25M		
100µs 1.25G 1.25M 6.25G 6.25M 2.5G 2.5M	6.25G 6.25N	1 625M	625k	6.25G	6.25M	1.25G	1.25M	6.25G	6.25M		
50µs 1.25G 625k 12.5G 6.25M 2.5G 1.25M	12.5G 6.25N	1 625M	312.5k	12.5G	6.25M	1.25G	625k	12.5G	6.25M		
20μs 1.25G 250k 31.25G 6.25M 2.5G 500k	31.25G 6.25N	1 625M	125k	31.25G	6.25M	1.25G	250k	31.25G	6.25M		
10µs 1.25G 125k 62.5G 6.25M 2.5G 250k	62.5G 6.25N	1 625M	62.5k	62.5G	6.25M	1.25G	125k	62.5G	6.25M		
5µs 1.25G 62.5k 125G 6.25M 2.5G 125k	125G 6.25N	1 625M	31.25k	125G	6.25M	1.25G	62.5k	125G	6.25M		
2µs 1.25G 25k 125G 2.5M 2.5G 50k	125G 2.5M	625M	12.5k	125G	2.5M	1.25G	25k	125G	2.5M		
1µs 1.25G 12.5k 125G 1.25M 2.5G 25k	125G 1.25N	1 625M	6.25k	125G	1.25M	1.25G	12.5k	125G	1.25M		
500ns 1.25G 6.25k 125G 625k 2.5G 12.5k	125G 625k	625M	3.125k	125G	625k	1.25G	6.25k	125G	625k		
200ns 1.25G 2.5k 125G 250k 2.5G 5k	125G 250k	625M	1.25k	125G	250k	1.25G	2.5k	125G	250k		
100ns 1.25G 1.25k 125G 125k 2.5G 2.5k	125G 125k	625M	625	125G	125k	1.25G	1.25k	125G	125k		
50ns 1.25G 625 125G 62.5k 2.5G 1.25k	125G 62.5k	625M	312.5	125G	62.5k	1.25G	625	125G	62.5k		
20ns 1.25G 250 125G 25k 2.5G 500	125G 25k	625M	125	125G	25k	1.25G	250	125G	25k		
10ns 1.25G 125 125G 12.5k 2.5G 250	125G 12.5k	625M	62.5	125G	12.5k	1.25G	125	125G	12.5k		
5ns 1.25G 62.5 125G 6.25k 2.5G 125	125G 6 25k	625M	31.25	125G	6.25k	1.25G	62.5	125G	6.25k		
2ns 125G 25 125G 2.5k 2.5G 50	125G 2.5k	625M	12.5	125G	2.5k	1 25G	25	125G	2.5k		
1ns 1.25G 12.5 125G 1.25k 2.5G 25	125G 1 25k	625M	6.25	125G	1.25k	1.25G	12.5	125G	1.25k		

太枠以外は、実時間サンプリングモード (Realtime) です。

メモリオプションなしの場合、このレコード長ではアクイジションはシングル動作になります。

*1 メモリオプションなしの場合、このレコード長では高分解能モードにできません。

*2 メモリオプションなしの場合、このレコード長ではインタポレートモードや等価時間サンプリングモードにできません。

付録1 時間軸設定 / サンプルレート / レコード長の関係

レコード長が 12.5M ポイントの場合

(メモリオプションなし、または /M2 オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

1 設定	高分解能モード OFF 時									高分解能モード ON 時 *1								
	インタ	ィリーブヨ	Eード OF	F時*2	イン	タリーブ	モードの	NN 時	インタリーブモード OFF 時 インタリーブモード ON 時									
	Rea	Itime	Intpl	/Rep	Rea	Itime	Intpl/I	Rep *3	Rea	ltime	Intpl	/Rep	Rea	Itime	Intpl	/Rep		
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード		
Time/div	レート	長	レート		レート	長いようい	レート	長	レート	長	レート	長	レート	長	レート	長		
	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)		
500s	2.5K	12.5M	2.5K	12.5M	2.5K	12.510	2.5K	12.5M	2.5K	12.5M	2.5K	12.510	2.5K	12.510	2.5K	12.5M		
200s	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M	6.25k	12.5M		
100s	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M	12.5k	12.5M		
50s	25k	12.5M	25k	12.5M	25k	12.5M	25k	12.5M	25k	12.5M	25k	12.5M	25k	12.5M	25k	12.5M		
20s	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M	62.5k	12.5M		
10s	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M	125k	12.5M		
5s	250k	12.5M	250k	12.5M	250k	12.5M	250k	12.5M	250k	12.5M	250k	12.5M	250k	12.5M	250k	12.5M		
2s	625k	12.5M	625k	12.5M	625k	12.5M	625k	12.5M	625k	12.5M	625k	12.5M	625k	12.5M	625k	12.5M		
1s	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M	1.25M	12.5M		
500ms	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M	2.5M	12.5M		
200ms	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M	6.25M	12.5M		
100ms	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M	12.5M		
50ms	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M		
20ms	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M	62.5M	12.5M		
10ms	125M	12.5M	125M	12.5M	125M	12.5M	125M	12.5M	125M	12.5M	125M	12.5M	125M	12.5M	125M	12.5M		
5ms	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M		
2ms	625M	12.5M	625M	12.5M	625M	12.5M	625M	12.5M	625M	12.5M	625M	12.5M	625M	12.5M	625M	12.5M		
1ms	1.25G	12.5M	1.25G	12.5M	1.25G	12.5M	1.25G	12.5M	625M	6.25M	1.25G	12.5M	1.25G	12.5M	1.25G	12.5M		
500µs	1.25G	6.25M	2.5G	12.5M	2.5G	12.5M	2.5G	12.5M	625M	3.125M	2.5G	12.5M	1.25G	6.25M	2.5G	12.5M		
200µs	1.25G	2.5M	6.25G	12.5M	2.5G	5M	6.25G	12.5M	625M	1.25M	6.25G	12.5M	1.25G	2.5M	6.25G	12.5M		
100µs	1.25G	1.25M	12.5G	12.5M	2.5G	2.5M	12.5G	12.5M	625M	625k	12.5G	12.5M	1.25G	1.25M	12.5G	12.5M		
50µs	1.25G	625k	25G	12.5M	2.5G	1.25M	25G	12.5M	625M	312.5k	25G	12.5M	1.25G	625k	25G	12.5M		
20µs	1.25G	250k	62.5G	12.5M	2.5G	500k	62.5G	12.5M	625M	125k	62.5G	12.5M	1.25G	250k	62.5G	12.5M		
10µs	1.25G	125k	125G	12.5M	2.5G	250k	125G	12.5M	625M	62.5k	125G	12.5M	1.25G	125k	125G	12.5M		
5µs	1.25G	62.5k	125G	6.25M	2.5G	125k	125G	6.25M	625M	31.25k	125G	6.25M	1.25G	62.5k	125G	6.25M		
2µs	1.25G	25k	125G	2.5M	2.5G	50k	125G	2.5M	625M	12.5k	125G	2.5M	1.25G	25k	125G	2.5M		
1µs	1.25G	12.5k	125G	1.25M	2.5G	25k	125G	1.25M	625M	6.25k	125G	1.25M	1.25G	12.5k	125G	1.25M		
500ns	1.25G	6.25k	125G	625k	2.5G	12.5k	125G	625k	625M	3.125k	125G	625k	1.25G	6.25k	125G	625k		
200ns	1.25G	2.5k	125G	250k	2.5G	5k	125G	250k	625M	1.25k	125G	250k	1.25G	2.5k	125G	250k		
100ns	1.25G	1.25k	125G	125k	2.5G	2.5k	125G	125k	625M	625	125G	125k	1.25G	1.25k	125G	125k		
50ns	1.25G	625	125G	62.5k	2.5G	1.25k	125G	62.5k	625M	312.5	125G	62.5k	1.25G	625	125G	62.5k		
20ns	1.25G	250	125G	25k	2.5G	500	125G	25k	625M	125	125G	25k	1.25G	250	125G	25k		
10ns	1.25G	125	125G	12.5k	2.5G	250	125G	12.5k	625M	62.5	125G	12.5k	1.25G	125	125G	12.5k		
5ns	1.25G	62.5	125G	6.25k	2.5G	125	125G	6.25k	625M	31.25	125G	6.25k	1.25G	62.5	125G	6.25k		
2ns	1.25G	25	125G	2.5k	2.5G	50	125G	2.5k	625M	12.5	125G	2.5k	1.25G	25	125G	2.5k		
1ns	1.25G	12.5	125G	1.25k	2.5G	25	125G	1.25k	625M	6.25	125G	1.25k	1.25G	12.5	125G	1.25k		

太枠以外は、実時間サンプリングモード (Realtime) です。

メモリオプションなしの場合、このレコード長ではアクイジションはシングル動作になります。

- *1 メモリオプションなしの場合、このレコード長では高分解能モードにできません。
- *2 メモリオプションなしの場合、このレコード長ではインタリーブモードを OFF にできません。
- *3 メモリオプションなしの場合、このレコード長ではインタポレートモードや等価時間サンプリングモードにできません。

レコード長が 25M ポイントの場合

(/M1(S) オプション、または /M3 オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

設定	高分解能モード OFF 時									高分解能モード ON 時 *1								
	イン	タリーブ	モードの	FF 時	イン	タリーブ	モードの	DN 時	インタリーブモード OFF 時 インタリーブモード ON 時									
$ \rangle$	Rea	ltime	Intpl/	Rep ^{*2}	Rea	ltime	Intpl/	Rep ^{*2}	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl	/Rep		
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード		
Time/div	レート	長	レート	長	レート	長	レート	長	レート	長	レート	長のい	レート	長	レート	長		
	(S/s)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/S)	(ホイント)	(S/s)	(ホイント)		
500s	5K	2511	5K	2511	5K	2511	5K	2511	5K	2511	5K	25M	5K	2511	5K	25M		
200s	12.5K	2511	12.5K	2511	12.5K	2511	12.5K	2511	12.5K	2511	12.5K	25M	12.5K	2511	12.5K	25M		
100s	25k	25M	25K	25M	25k	25M	25k	25M	25k	25M	25k	25M	25k	25M	25K	25M		
50s	50k	25M	50K	25M	50k	25M	50K	25M	50k	25M	50k	25M	50K	25M	50K	25M		
20s	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M	125k	25M		
10s	250k	25M	250k	25M	250k	25M	250k	25M	250k	25M	250k	25M	250k	25M	250k	25M		
5s	500k	25M	500k	25M	500k	25M	500k	25M	500k	25M	500k	25M	500k	25M	500k	25M		
2s	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M	1.25M	25M		
1s	2.5M	25M	2.5M	25M	2.5M	25M	2.5M	25M	2.5M	25M	2.5M	25M	2.5M	25M	2.5M	25M		
500ms	5M	25M	5M	25M	5M	25M	5M	25M	5M	25M	5M	25M	5M	25M	5M	25M		
200ms	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M		
100ms	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M	25M		
50ms	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M	25M	12.5M		
20ms	125M	25M	125M	25M	125M	25M	125M	25M	125M	25M	125M	25M	125M	25M	125M	25M		
10ms	250M	25M	250M	25M	250M	25M	250M	25M	250M	25M	250M	25M	250M	25M	250M	25M		
5ms	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M	250M	12.5M		
2ms	1.25G	25M	1.25G	25M	1.25G	25M	1.25G	25M	625M	12.5M	1.25G	25M	1.25G	25M	1.25G	25M		
1ms	1.25G	12.5M	2.5G	25M	2.5G	25M	2.5G	25M	625M	6.25M	2.5G	25M	1.25G	12.5M	2.5G	25M		
500µs	1.25G	6.25M	5G	25M	2.5G	12.5M	5G	25M	625M	3.125M	5G	25M	1.25G	6.25M	5G	25M		
200µs	1.25G	2.5M	12.5G	25M	2.5G	5M	12.5G	25M	625M	1.25M	12.5G	25M	1.25G	2.5M	12.5G	25M		
100µs	1.25G	1.25M	25G	25M	2.5G	2.5M	25G	25M	625M	625k	25G	25M	1.25G	1.25M	25G	25M		
50µs	1.25G	625k	50G	25M	2.5G	1.25M	50G	25M	625M	312.5k	50G	25M	1.25G	625k	50G	25M		
20µs	1.25G	250k	125G	25M	2.5G	500k	125G	25M	625M	125k	125G	25M	1.25G	250k	125G	25M		
10µs	1.25G	125k	125G	12.5M	2.5G	250k	125G	12.5M	625M	62.5k	125G	12.5M	1.25G	125k	125G	12.5M		
5µs	1.25G	62.5k	125G	6.25M	2.5G	125k	125G	6.25M	625M	31.25k	125G	6.25M	1.25G	62.5k	125G	6.25M		
2µs	1.25G	25k	125G	2.5M	2.5G	50k	125G	2.5M	625M	12.5k	125G	2.5M	1.25G	25k	125G	2.5M		
1µs	1.25G	12.5k	125G	1.25M	2.5G	25k	125G	1.25M	625M	6.25 k	125G	1.25M	1.25G	12.5k	125G	1.25M		
500ns	1.25G	6.25k	125G	625k	2.5G	12.5k	125G	625k	625M	3.125k	125G	625k	1.25G	6.25 k	125G	625k		
200ns	1.25G	2.5k	125G	250k	2.5G	5k	125G	250k	625M	1.25k	125G	250k	1.25G	2.5k	125G	250k		
100ns	1.25G	1.25k	125G	125k	2.5G	2.5k	125G	125k	625M	625	125G	125k	1.25G	1.25k	125G	125k		
50ns	1.25G	625	125G	62.5k	2.5G	1.25k	125G	62.5k	625M	312.5	125G	62.5k	1.25G	625	125G	62.5k		
20ns	1.25G	250	125G	25k	2.5G	500	125G	25k	625M	125	125G	25k	1.25G	250	125G	25k		
10ns	1.25G	125	125G	12.5k	2.5G	250	125G	12.5k	625M	62.5	125G	12.5k	1.25G	125	125G	12.5k		
5ns	1.25G	62.5	125G	6.25k	2.5G	125	125G	6.25k	625M	31.25	125G	6.25k	1.25G	62.5	125G	6.25k		
2ns	1.25G	25	125G	2.5k	2.5G	50	125G	2.5k	625M	12.5	125G	2.5k	1.25G	25	125G	2.5k		
1ns	1.25G	12.5	125G	1.25k	2.5G	25	125G	1.25k	625M	6.25	125G	1.25k	1.25G	12.5	125G	1.25k		

太枠以外は、実時間サンプリングモード (Realtime) です。

/M1(S) オプションの場合、このレコード長ではアクイジションはシングル動作になります。

*1 /M1(S) オプションの場合、このレコード長では高分解能モードにできません。

*2 /M1(S) オプションの場合、このレコード長ではインタポレートモードや等価時間サンプリングモードにできません。

付録1 時間軸設定 / サンプルレート / レコード長の関係

レコード長が 62.5M ポイントの場合

(/M1(S) オプション、または /M2 オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

									1									
設定	高分解能モード OFF 時									高分解能モード ON 時								
	インタ	タリーブ-	Eード OF	F時*	イン	タリーブ	モード ON 時		イン	タリーブ	モードの	FF 時	イン	タリーブ	<u>モード (</u>	N 時		
	Rea	Itime	Intpl	/Rep	Realtime		Intpl	/Rep	Rea	ltime	Intpl	/Rep	Real	time	Intpl/Rep			
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード		
Time/div	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)		
500s	12.5k	62.5M			12.5k	62.5M												
200s	31.25k	62.5M			31.25k	62.5M												
100s	62.5k	62.5M			62.5k	62.5M												
50s	125k	62.5M			125k	62.5M												
20s	312.5k	62.5M			312.5k	62.5M												
10s	625k	62.5M			625k	62.5M												
5s	1.25M	62.5M			1.25M	62.5M												
2s	3.125M	62.5M			3.125M	62.5M												
1s	6.25M	62.5M			6.25M	62.5M												
500ms	12.5M	62.5M			12.5M	62.5M												
200ms	31.25M	62.5M			31.25M	62.5M												
100ms	62.5M	62.5M			62.5M	62.5M												
50ms	125M	62.5M			125M	62.5M												
20ms	312.5M	62.5M			312.5M	62.5M												
10ms	625M	62.5M			625M	62.5M		ィコード長 ?は、イン /ートモー 評価時間サ										
5ms	1.25G	62.5M			1.25G	62.5M												
2ms	1.25G	25M	設定では	ー r 夜 t. イン	2.5G	50M	2002-											
1ms	1.25G	12.5M	タポレー	->	2.5G	25M	タポレー					古八切		+ 011-	マナナリ	L /		
500µs	1.25G	6.25M	ドや等価	時間サ	2.5G	12.5M	ドや等個				VF CIA	、同汀阱	RET – r	& UN IC	こできません。			
200µs	1.25G	2.5M	ンプリン	·グモー	2.5G	5M	シプリン	/グモー										
100µs	1.25G	1.25M	トにでさ	ません。	2.5G	2.5M	トにでさ	きません。										
50µs	1.25G	625k			2.5G	1.25M												
20µs	1.25G	250k			2.5G	500k												
10µs	1.25G	125k			2.5G	250k												
5µs	1.25G	62.5k			2.5G	125k												
2µs	1.25G	25k			2.5G	50k												
1µs	1.25G	12.5k			2.5G	25k												
500ns	1.25G	6.25k			2.5G	12.5k												
200ns	1.25G	2.5k			2.5G	5k												
100ns	1.25G	1.25k			2.5G	2.5k												
50ns	1.25G	625			2.5G	1.25k												
20ns	1.25G	250			2.5G	500												
10ns	1.25G	125			2.5G	250												
5ns	1.25G	62.5			2.5G	125												
2ns	1.25G	25			2.5G	50												
1ns	1.25G	12.5			2.5G	25												

このレコード長ではアクイジションはシングル動作になります。

*/M1(S) オプションの場合、このレコード長ではインタリーブモードを OFF にできません。

レコード長が 125M ポイントの場合

(/M2 オプション、または /M3 オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

設定			高	分解能モ	ードOFF	時			高分解能モード ON 時								
	イング	^タ リーブ	モードOI	FF 時 [*]	イン	タリーブ	モードロ	N 時	イン	タリーブ	モードの	FF 時	イン	タリーブ	モード(ON 時	
$ \rangle$	Rea	Itime	Intpl	/Rep	Rea	ltime	Intpl	/Rep	Rea	Itime	Intpl	/Rep	Rea	ltime	Intp	l/Rep	
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	
Time/div	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	
500s	25k	125M			25k	125M											
200s	62.5k	125M			62.5k	125M											
100s	125k	125M			125k	125M											
50s	250k	125M			250k	125M											
20s	625k	125M			625k	125M											
10s	1.25M	125M			1.25M	125M											
5s	2.5M	125M			2.5M	125M											
2s	6.25M	125M]		6.25M	125M											
1s	12.5M	125M			12.5M	125M											
500ms	25M	125M			25M	125M											
200ms	62.5M	125M			62.5M	125M											
100ms	125M	125M			125M	125M											
50ms	250M	125M			250M	125M											
20ms	625M	125M			625M	125M					長設定では、						
10ms	1.25G	125M			1.25G	125M		コード長 は、イン ートモー 価時間サ									
5ms	1.25G	62.5M		1—ド트	2.5G	125M											
2ms	1.25G	25M	設定では	・ 「 _反 t、イン	2.5G	50M	設定では										
1ms	1.25G	12.5M	タポレー	ートモー	2.5G	25M	タポレー					古八切		t ON I-	こできません	+/	
500µs	1.25G	6.25M	ドや等価	時間サ	2.5G	12.5M	ドや等価					. 向刀件	het – r	2 ON IC		2000	
200µs	1.25G	2.5M	レプリン	·グモー	2.5G	5M	レプリン	·グモー									
100µs	1.25G	1.25M	トにでき	ません。	2.5G	2.5M	トにでき	ません。									
50µs	1.25G	625k			2.5G	1.25M											
20µs	1.25G	250k			2.5G	500k											
10µs	1.25G	125k			2.5G	250k											
5µs	1.25G	62.5k			2.5G	125k											
2µs	1.25G	25k			2.5G	50k											
1µs	1.25G	12.5k			2.5G	25k											
500ns	1.25G	6.25k			2.5G	12.5k											
200ns	1.25G	2.5k			2.5G	5k											
100ns	1.25G	1.25k			2.5G	2.5k											
50ns	1.25G	625			2.5G	1.25k											
20ns	1.25G	250			2.5G	500											
10ns	1.25G	125			2.5G	250											
5ns	1.25G	62.5			2.5G	125											
2ns	1.25G	25			2.5G	50											
1ns	1.25G	12.5			2.5G	25						-					

このレコード長ではアクイジションはシングル動作になります。

*/M2 オプションの場合、このレコード長ではインタリーブモードを OFF にできません。

レコード長:250M ポイントの場合

(M3 オプションで選択可能)

Intpl: インタポレートモード Rep: 等価時間サンプリングモード

1 設定			高	分解能モ	ードOFF	時			高分解能モード ON 時									
	イン	タリーブ	モードO)FF 時	イン	タリーブ	モードの	NN 時	インタリーブモード OFF 時 インタリーブモード ON 時									
	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl	/Rep	Rea	ltime	Intpl	/Rep	Rea	ltime	Intp	l/Rep		
	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード	サンプル	レコード		
Time/div	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)	レート (S/s)	長 (ポイント)		
500s					50k	250M												
200s					125k	250M												
100s					250k	250M												
50s					500k	250M												
20s					1.25M	250M												
10s					2.5M	250M												
5s					5M	250M												
2s					12.5M	250M												
1s					25M	250M												
500ms					25M	125M												
200ms					125M	250M												
100ms					250M	250M												
50ms					250M	125M												
20ms					1.25G	250M												
10ms					1.25G	125M												
5ms					2.5G	125M	701-											
2ms					2.5G	50M	2012-	ニドゼ た イン										
1ms	このレコ	コード長つ	では、イン	ンタリー	2.5G	25M	タポレー	->- ->			0.	主八四		+ 011-				
500µs	ブモー	ドをOFF	にできま	せん。	2.5G	12.5M	ドや等価	時間サ	このレ-	コート長記	安定では、	、局分解	能モート	をUNに	でさよも	th _o		
200µs					2.5G	5M	ンプリン	/グモー										
100µs					2.5G	2.5M	ドにでき	ません。										
50µs					2.5G	1.25M												
20µs					2.5G	500k												
10µs					2.5G	250k												
5µs					2.5G	125k												
2µs					2.5G	50k												
1µs					2.5G	25k												
500ns					2.5G	12.5k												
200ns					2.5G	5k												
100ns					2.5G	2.5k												
50ns					2.5G	1.25k												
20ns					2.5G	500												
10ns					2.5G	250												
5ns					2.5G	125												
2ns					2.5G	50												
1ns					2.5G	25												

このレコード長ではアクイジションはシングル動作になります。