PZ4000 ND-PJJT USER'S MANUAL

ユーザーズマニュアル

ユーザー登録のお願い

今後の新製品情報を確実にお届けするために、お客様にユーザー登録をお願いして おります。下記 URL の「ユーザー登録」のページで、ご登録いただけます。

http://www.yokogawa.co.jp/tm/

計測相談のご案内

当社では、お客様に正しい計測をしていただけるよう、当社計測器製品の仕様、機種の選定、および応用に関するご相談を下記カスタマサポートセンターにて承っております。なお、価格や納期などの販売に関する内容については、最寄りの営業、 代理店にお問い合わせください。

横河メータ&インスツルメンツ株式会社 カスタマサポートセンター

【フリーダイヤル受付時間:祝祭日を除く月~金曜日の9:00~12:00、13:00~17:00】

はじめに

このたびは、パワーアナライザPZ4000をお買い上げいただきましてありがとうございます。

このユーザーズマニュアルは、本機器の機能、操作方法、取り扱い上の注意などについて 説明したものです。ご使用前にこのマニュアルをよくお読みいただき、正しくお使いくだ さい。

お読みになったあとは、ご使用時にすぐにご覧になれるところに、大切に保存してください。ご使用中に操作がわからなくなったときなどにきっとお役に立ちます。

なお、PZ4000のマニュアルとして、このマニュアルを含め、次の2冊があります。あわ せてお読みください。

マニュアル名	マニュアルNo.	内容
PZ4000パワーアナライザ ユーザーズマニュアル	IM 253710-01	本書です。PZ4000の通信機能を除 く全機能とその操作方法について説 明しています。
PZ4000パワーアナライザ 通信インタフェース ユーザーズマニュアル	IM 253710-11	GP-IB, シリアルインタフェースの 通信機能について説明しています。

ご注意

- ●本書の内容は、性能・機能の向上などにより、将来、予告なしに変更することがあります。また、実際の表示内容が本書に記載の表示内容と多少異なることがあります。
- ●本書の内容に関しては万全を期していますが、万一ご不審の点や誤りなどお気づきのことがありましたら、お手数ですが、裏表紙に記載の当社支社・支店・営業所までご連絡ください。
- 本書の内容の全部または一部を無断で転載,複製することは禁止されています。
- 保証書が付いています。再発行はいたしません。よくお読みいただき、ご理解のうえ大 切に保存してください。

商標

- MS-DOSは,Microsoft Corporationの登録商標です。
- PostScriptは, Adobe Systems Incorporatedの登録商標です。
- その他,本文中に使われている会社名,商品名は,各社の登録商標または商標です。

履歴

● 1999年	4月	初版発行
● 1999年	11月	2版発行
● 2000年	4月	3版発行
● 2009年	5月	4版発行

梱包内容を確認してください

梱包を開けたら、ご使用前に以下のことを確認してください。万一,お届けした製品の間 違いや品不足,または外観に異常が認められる場合には,お買い求め先にご連絡ください。

PZ4000本体

側面の形名銘板に記載されているMODEL(形名)とSUFFIX(仕様コード)で、ご注文どおりであることを確認してください。

● MODEL(形名)とSUFFIX(仕様コード)

形名	仕様コード		仕様内容
253710			100-120 / 200-240VAC 本体には,入力モジュールは含まれていません。 入力モジュールについては,ⅲページをご覧ください。
電源コード	-D		UL,CSA規格電源コード(部品番号:A1006WD) [最大定格雷圧:125V. 最大定格雷流:7A]
	-M		UL,CSA規格電源コート(部品番号:A1006WD)+3極-2極 変換アダプタ(日本国内でのみ使用可,部品番号:A1253JZ) [最大定格零圧:125V/最大定格零流:7A]
	-F		WDE規格電源コード(部品番号: A1009WD) [最大定格電圧:250V.最大定格電流: 10A]
	-Q		BS規格電源コード(部品番号: A1054WD) [最大定格電圧: 250V. 最大定格電流: 10A]
	-R		AS規格電源コード(部品番号:A1024WD) [最大定格電圧:250V.最大定格電流:10A]
	-H		GB規格電源コード(CCC対応)(部品番号:A1064WD) [最大定格電圧:250V,最大定格電流:10A]
 付加仕様 (オプション	r)	/M1 /M3 /B5 /C7	1Mワード/CHへのメモリ拡張 [*] 4Mワード/CHへのメモリ拡張 [*] 内蔵プリンタ SCSIインタフェース

* /M1, /M3の付加仕様は, どちらか一方しか選択できません。

例 UL,CSA規格電源コード+3極-2極変換アダプタ,4Mワード/CHへのメモリ拡張,内蔵プリン タ,SCSIインタフェースの仕様の場合:253710-M/M3/B5/C7

● NO.(計器番号)

お買い求め先にご連絡いただく際には、この番号もご連絡ください。

廃電気電子機器指令(2002/96/EC)

(この指令はEU圏内のみで有効です。) この製品はWEEE 指令(2002/96/EC)マーキング要求に準拠します。以下の表示は、この 電気電子製品を一般家庭廃棄物として廃棄してはならないことを示します。 製品カテゴリー WEEE 指令の付属書1に示される製品タイプに準拠して、この製品は"監視及び制御装 置"の製品として分類されます。 EU圏内で製品を廃棄する場合は、お近くの横河ヨーロッパ・オフィスまでご連絡ください。 家庭廃棄物では処分しないでください。

PZ4000本体付属品

次の付属品が添付されています。

_				
品	名	形名/部品番号	数量	備考
1.	電源コード	前ページ参照	1	_
2.	3極-2極変換アダプタ	A1253JZ	1	電源コード-Mだけに付属
3.	電源用予備ヒューズ	A1463EF	1	250V, 6.3A, タイムラグ (本体ヒューズホルダに装着)
4.	プリンタ用ロール紙	B9850NX	1	内蔵プリンタ用 仕様コード/B5だけに付属
5.	底面脚用ゴム	A9088ZM	2	2個で1組, 2組を添付
6.	カバープレート	B9315DC	4	モジュールが装着されていないスロット には,8番のねじを使用してカバープ レートを装着。
7.	電流入力保護カバー	B9315DJ	1	_
8.	ねじ	Y9305LB	20	M3,ねじ長さ:5mm(カバープレートと 電流入力保護カバー取り付け用ねじ)
9.	クランプフィルタ (フェライトコア)	A1179MN	1	GP-IBケーブル用
10	 ・ユーザーズマニュアル ・通信インタフェース ユーザーズマニュアル 	IM253710-01 IM253710-11	1 1	本書 一

1. (仕様コードに合わせ,1本付属します)

入力モジュール(別売)

入力モジュールの形名銘板に記載されているMODEL(形名)が、ご注文どおりであることを 確認してください。

● 電力測定モジュール

形名	仕様コード	仕様内容
253751 253752		電圧1000V/電流5A/電流センサ500mV 電圧1000V/電流5A&20A/電流センサ500mV
モジュール仕様	-E1	プラグインユニット
* 電力測定モジュ-	ールは,エレメン	ノト番号1のスロットから順番に装着してください。

● センサ入力モジュール^{*1}

形名	仕様コード	仕様内容
253771 ^{*2}		モータモジュール,2チャネル入力。 回転センサやトルクメータからの信号を入力可能。
モジュール仕様	-E1	プラグインユニット

*1 センサ入力モジュールは,エレメント番号4のスロットに装着してください。 *2 ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

例 電圧1000V/電流5A/電流センサ500mVの電力測定モジュールの場合: 253751-E1

入力モジュール付属品

入力モジュールに、次の付属品が添付されています。

品名	形名/部品番号	数量	備考
1. 外部センサ用ケーブル	B9284LK	1	253751, 253752に付属
2. クランプフィルタ (フェライトコア)	A1179MN	2	測定ケーブル用
1. 2.			

アクセサリ(別売)

別売アクセサリとして、次のものがあります。

品名	形名 /部品番号	販売 単位	備考
1. シリアルポート 変換アダプタ	366971	1	9ピン ^{*1} -25ピン ^{*2} 変換アダプタ *1 EIA-574規格 *2 EIA-232規格(RS-232)
2. BNC-ワニグチ 測定リード	366926	1	42V以下, 長さ 1m
3. BNC-BNC 測定リード	366924 366925	1 1	42V以下, 長さ 1m 42V以下, 長さ 2m
4. 測定リード	758917	1	2本で1単位,別売のアダプタ758922 または758929と組み合わせて使用, 長さ 0.75m,定格電圧1000V
	758922	1	2個で1単位,測定リード758917用 定格電圧300V
	758929	1	2個で1単位, 測定リード758917用 定格1000V
7. フォーク端子 アダプタセット	758921	1	2個で1単位, 測定リード758917用 定格電流25A

補用品(別売)

別売補用品として、次のものがあります。

品名	形名/部品番号	販売単位	備考
1. プリンタ用ロール紙	B9850NX	5	1巻で1単位,感熱紙,全長 30m
2. 電源用予備ヒューズ	A1463EF	2	250V, 6.3A, タイムラグ

Note _

梱包箱を保管されることをおすすめします。お客様で製品を輸送するときにお役に立ちます。

本機器を安全にご使用いただくために

本機器はIEC規格安全階級I(保護接地端子付き)の製品です。 本機器を正しく安全に使用していただくため、本機器の操作にあたっては下記の安全注意 事項を必ずお守りください。このマニュアルで指定していない方法で使用すると、本機器 の保護機能が損なわれることがあります。なお、これらの注意に反したご使用により生じ た障害については、YOKOGAWAは責任と保証を負いかねます。

本機器には、次のようなシンボルマークを使用しています。

① "取扱注意"(人体および機器を保護するために、ユーザーズマニュアルやサービ スマニュアルを参照する必要がある場所に付いています。)

~交流

★ 直流および交流の両方

ON(電源)

) OFF(電源)

___ ON(電源)の状態

OFF(電源)の状態

保護接地端子。安全にご使用いただくため、測定する電流が7A(実効値)を超える場合は、測定する電流以上の電流を流すことが可能なケーブルまたは導体を使って、本機器を操作する前に必ず保護接地してください。保護接地端子は、2004年1月以降出荷の製品のリアパネルに装備されています。

次の注意事項をお守りください。取扱者の生命や身体に危険が及ぶ恐れがあります。

警告

本機器の電源電圧が供給電源の電圧に合っているか必ず確認したうえで,本機器 の電源を入れてください。

● 電源コードとプラグ

感電や火災防止のため、電源コードおよび3極-2極変換アダプタ(日本国内でのみ 使用可)は、当社から供給されたものをご使用ください。主電源プラグは、保護接 地端子を備えた電源コンセントにだけ接続してください。保護接地線を備えてい ない延長用コードを使用すると、保護動作が無効になります。

● 保護接地

感電防止のため,本機器の電源を入れる前に,必ず保護接地をしてください。本 機器に付属の電源コードは接地線のある3極電源コードです。したがって,保護 接地端子のある3極電源コンセントを使用してください。また,3極-2極変換アダ プタ(日本国内でのみ使用可)を使用する場合には,保護接地端子に変換アダプタ の接地線を確実に接続してください。

● 保護接地の必要性

本機器の内部または外部の保護接地線を切断したり、保護接地端子の結線を外さないでください。いずれの場合も本機器が危険な状態になります。

● 保護機能の欠陥

保護接地およびヒューズなどの保護機能に欠陥があると思われるときは、本機器 を動作させないでください。また本機器を動作させる前に、保護機能に欠陥がな いか確認するようにしてください。

● ヒューズ

火災防止のため本機器で指定された定格(電圧,電流,タイプ)のヒューズを使用 してください。電源スイッチをオフにして電源コードを抜いてから,ヒューズの 交換をしてください。また,ヒューズホルダを短絡しないでください。

ガス中での使用 可燃性、爆発性のガスまたは蒸気のある場所では、本機器を動作させないでくだ さい。そのような環境下で本機器を使用することは大変危険です。

- ケースの取り外し 当社のサービスマン以外はケースを外さないでください。本機器内には高電圧の 箇所があり、危険です。
- **外部接続** 確実に保護接地をしてから、測定対象や外部制御回路への接続をしてください。

使用環境に制限があります。ご注意ください。

本製品はクラスA(工業環境用)の製品です。家庭環境においては、無線妨害を生 ずることがあり、その場合には使用者が適切な対策を講ずることが必要となるこ とがあります。

このマニュアルの利用方法

このマニュアルの構成

このユーザーズマニュアルは、次のように構成されています。

第1章 機能説明

本機器の機能について説明しています。ここでは操作方法については説明していませんが、各 操作の前に読んでおくと、操作内容がわかりやすくなります。

第2章 各部の名称と使い方

本機器の各部の名称とその使い方について説明しています。

第3章 測定を開始する前に

使用上の注意,設置,入力モジュールの装着方法,電源への接続,測定回路の結線の仕方,電源スイッチのON/OFFなど,測定操作をする前の準備について説明しています。

第4章 共通操作

数値や文字列の入力方法,設定の初期化,データ取り込みのスタート/ストップ,ゼロレベル 補正,NULL機能など,測定/演算機能や他の操作項目に影響する操作/機能について説明して います。

第5章 測定モードと測定レンジの設定

測定モード(通常/高調波の選択),結線方式,測定レンジ,フィルタなど,測定対象である電 圧/電流信号の入力条件や入力された信号の取り扱いの設定操作について説明しています。

第6章 時間軸の設定

観測時間、レコード長など、時間軸方向の入力条件の設定操作について説明しています。

第7章 トリガの設定

電圧/電流信号を取り込むタイミングを決めるトリガの設定操作について説明しています。

第8章 数值表示

測定ファンクションデータ(数値データ)の表示の仕方について説明しています。

第9章 波形表示

電圧/電流信号の波形表示の仕方について説明しています。

第10章 数值演算

デルタ演算,ユーザー定義,アペレージングなど,数値演算の設定操作について説明しています。

第11章 波形解析

FFT演算,カーソル測定など,波形演算の設定操作について説明しています。

第12章 データの保存と読み込み 数値/波形データの保存や、保存データの本機器への読み込みの方法について説明しています。

第13章 画面イメージデータの出力 画面表示されている画像データの出力方法について説明しています。

第14章 外部トリガ出力とその他の操作 外部トリガ出力機能や、メッセージ言語、表示色などの設定操作について説明しています。

第15章 モータ評価機能(モータモジュールに適用) 回転センサやトルクメータからの信号を入力して、各種モータ特性値を得るための設定操作に ついて説明しています。

第16章 トラブルシューティングと保守・点検 異常時の推定原因とその対処方法,画面に表示される各種メッセージの説明,セルフテストの 仕方,電源ヒューズの交換など,保守・点検事項について説明しています。

第17章 仕様

本機器本体や入力モジュールの仕様を表にまとめています。

付録

観測時間/サンプルレート/レコード長の関係,測定ファンクション/デルタ演算の求め方,初 期設定一覧,ASCIIヘッダファイルやFloatファイルのフォーマットなどを記載しています。

索引

記号-アルファベット-五十音順の索引があります。

このマニュアルで使用している記号

● 単位

- · k:「1000」の意味です。使用例 15kg, 100kS/s
- ・K:「1024」の意味です。使用例 640Kバイト(フロッピーディスクの記憶容量)

● 表示文字

- ·[]でくくった英数字は、主に画面の表示文字や設定数値を示します。
- ・SHIFT+操作キーは、SHIFTキーを押して、SHIFTキーの左上のインジケータを点 灯させてから、操作キーを押すという意味です。押した操作キーの下に記されてい る項目のメニューが画面に表示されます。

● 注記

このマニュアルでは、注記を以下のようなシンボルで区別しています。

本機器で使用しているシンボルマークで、人体および機器に危険が あることを示すとともに、ユーザーズマニュアルを参照する必要が あることを示します。ユーザーズマニュアルでは、その参照ページ に目印として使用しています。

- 警告告報目

 取り扱いを誤った場合に、使用者が死亡または重傷を負う危険があるときに、その危険を避けるための注意事項が記載されています。
- 注 意 取り扱いを誤った場合に、使用者が軽傷を負うか、または物的損害 のみが発生する危険があるときに、それを避けるための注意事項が 記載されています。

Note 本機器を取り扱ううえで重要な情報が記載されています。

● 操作説明ページで使用しているシンボル

第3~16章で操作説明をしているページでは,説明内容を区別するために,次のような シンボルを使用しています。

- 操作キー 設定操作に関連する操作キーを示しています。
- 操作 数字で示す順序で各操作をしてください。ここでは、初めて操作を することを前提に、手順を説明しています。操作内容によっては、 すべての操作を必要としない場合があります。
- 解 説 操作に関連する設定内容や限定事項について説明しています。ここ では、機能そのものについては、詳しく説明していません。機能に ついての詳しい説明は、第1章をご覧ください。

目次

	はじる	めに	i
	梱包	内容を確認してください	ii
	本機	器を安全にご使用いただくために	vi
	この	マニュアルの利用方法	viii
第1章	機能	٤説明	
	1.1	システム構成とブロック図	1-1
		システム構成	1–1
		ブロック図	1-2
		入力信号の流れと処理	1-3
	1.2	測定モードと測定/演算区間	
		通常測定モードと測定ファンクション(数値データの種類)	
		高調波測定モードと測定ファンクション(数値データの種類)	
		測定/演算区間	
		結線万式 ==	
	1 0		-
	1.3	テーダ(電圧/電流信号)の取り込み	1-12
		リノノリンクナーダ、人力モシュール、エレメントとナヤイル	I-I2
		測定レノシ、スケーリング	1-13 1 14
		入力ノイルタ(ノインノイルタCとロシロスノイルタ)	1-14
		観烈の間, ビコード及	1-16
		ビニー + 氏の方部, ノーム 、 ハ	1-17
	1.4	トリガ	1-18
		トリガソース、トリガスロープ、トリガレベル、トリガタイプ	
		トリガモード	
		トリガポジション,トリガディレイ	1-21
	1.5	数值表示	1-22
		通常測定モードの数値表示	1-22
		高調波測定モードの数値表示	1-23
		数値表示のリセット	1-25
	1.6	波形表示	1-26
		垂直(振幅)軸と水平(時間)軸	1-26
		波形表示のON/OFF,波形の画面分割表示,波形の表示補間	1-28
		波形のズーム	1-29
		高調波のベクトル表示	1-31
		高調波データのバーグラフ表示,X-Y波形表示	1-32
		その他の波形表示の設定	1-33
	1.7	数值演算	1-34
		デルタ演算,ユーザー定義ファンクション,皮相電力の演算式	1-34
		アベレージング, 位相差	1-35
		ひずみ率の演算式, Corrected Power, 数値演算の再実行	1-36
	1.8	波形解析	
		演算した波形の表示スケーリング	
		波形演昇の円実行, カーソル測正	

			目次
	1.9	データの保存/読み込みと、その他の便利な機能	1-42
	110	フロッピーディスクへの保存/読み込み. SCSIデバイスへの保存/読み込み.	
		イニシャライズ(初期化)、画面イメージデータの出力	1-42
		メッセージ言語の選択、画面輝度の設定、表示色の設定、アクションオントリガ、	
		自己診断機能,本機器のシステム状態の確認,通信機能(GP-IB/シリアル)	1-43
2章	各部	の名称と使い方	
	21	マロントパネル リアパネル 上面	2-1
	22	タージョイン・1700, シン・1700, 工品	2-3
	23	「無」「「「」、ショッシュ(「))」、「シッシッシュ	2-6
	2.4	出設 パー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-13
音	測定	を開始する前に	
	۲ ۲		3_1
	3.1	(C円上の)/上忌	3-7
	 ∧ 33	本版品で取自する	ב-כ ג ג
	A 3/	八/) ビノユ ルを表有する	
	2 <u>1</u> 2 5		0-C
	3.0 A 2.6	相反よく別とりるために	0-C
	A 3.0 2 D	电 <i>派</i> ど 按 旅 り る	3-10
	3.7	国技人川の測定凹路を結線する (南大測ウ明末)、 しの専匠(南次) た出えに仕始まえ)	0 1 1
	0.0	(電刀測定器センュールの電圧/電流入刀峏子に結線9る)	3-11
	3.8	外部の電流センサを使用して、測定回路を結線する	0.45
	0.0	(電力測定器モジュールの電流センサ人力コネクタに結線する)	3-15
	3.9	外部のP1/C1を使用して、測定回路を結線する	
		(電力測定器モジュールの電圧/電流人力端子に結線する)	3-19
	▲ 3.10	電圧人力が600Vを超える測定回路の結線をする	3-22
	3.11	電源スイッチをON/OFFする	3-23
	3.12	日付・時刻を合わせる	3-25
章	共通	操作	
	4.1	数値や文字列を入力する	4-1
	4.2	設定を初期化(イニシャライズ)する	4-3
	4.3	データの取り込みをスタート/ストップする	4-4
	4.4	ゼロレベル補正をする	4-6
	4.5	NULL機能を使う	4-7
	4.6	ヘルプ機能を使う	4-8
章	測定	モードと測定レンジの設定	
	5.1	測定モードを選択する	5-1
	5.2	結線方式を選択する	5-2
	5.3	直接入力のときの測定レンジを設定する	5-6
	5.4	外部の電流センサを使用するときの測定レンジを設定する	5-14
	5.5	外部のPT/CTを使用するときのスケーリング機能を設定する	5-20

xi

索

付

 6.1 観測時間を設定する	0.4
0.2 デーダを取り込むレコード長を選択する () ▲ 6.3 タイムペースを選択する () 高調波測定モードのときに適応します。 ▲ 6.4 高調波測定時のPLLソースを選択する () 第7章 トリガの設定 () () 第7章 トリガの設定 () () 第7章 トリガースを選択する () 第7章 トリガモードを選択する () 第7章 トリガモードを選択する () 第7章 トリガモードを選択する () 7.1 トリガモードを選択する () 7.2 トリガンースを選択する () 7.3 エッジトリガを設定する () 7.4 ウインドウトリガを設定する () 7.5 トリガポッションを設定する () 7.6 トリガディレイを設定する () 7.7 ア・ () () 第8章 数値表示 () 8.1 表示桁数を選択する () 8.2 通常測定データの表示項目を変える () 8.3 高調波測定データの表示項目を変える () 8.4 高調波測定データの表示項目を変える () 第9章 波形表示 () 9.1 表示するチャネルを選択する () 9.2	
 高調波測定モードのときに適応します。 ▲ 6.4 高調波測定時のPLLソースを選択する	
 高調波測定モードのときに適応します。 ▲ 6.4 高調波測定時のPLLソースを選択する 第7章 トリガの設定 7.1 トリガモードを選択する ▲ 7.2 トリガソースを選択する 7.3 エッジトリガを設定する 7.4 ウインドウトリガを設定する 7.5 トリガポジションを設定する 7.6 トリガディレイを設定する 7.7 第8章 数値表示 8.1 表示桁数を選択する 8.2 通常測定データを表示する 8.3 通常測定データを表示する 8.4 高調波測定データを表示する 8.5 高調波測定データの表示項目を変える 8.5 高調波測定データの表示項目を変える 8.5 高調波測定データの表示項目を変える 	
 ▲ 6.4 高調波測定時のPLLソースを選択する 第7章 トリガの設定 7.1 トリガモードを選択する	
 第7章 トリガの設定 「リガモードを選択する	6-7
 7.1 トリガモードを選択する	
 ▲ 7.2 トリガソースを選択する	7-1
7.3 エッジトリガを設定する	
7.4 ウインドウトリガを設定する ************************************	
7.5 トリガボシションを設定する 7- 7.6 トリガディレイを設定する 7- 第8章 数値表示 8.1 表示桁数を選択する 8.2 8.1 表示桁数を選択する 8.2 通常測定データを表示する 8.3 8.3 通常測定データの表示項目を変える 8- 8.4 高調波測定データを表示する 8- 高調波測定モードのときに適応します。 8- 高調波測定データの表示項目を変える 8- 第9章 波形表示 9.1 表示するチャネルを選択する 9.2 9.2 垂直ポジションを移動する 9.	
 7.6 トリガディレイを設定する	
第8章 数値表示 8.1 表示桁数を選択する 8.2 通常測定データを表示する 8.3 通常測定データの表示項目を変える 8.4 高調波測定データを表示する 高調波測定モードのときに適応します。 8- 高調波測定データの表示項目を変える 8- 第9章 波形表示 9.1 表示するチャネルを選択する 9.2 垂直ポジションを移動する	
 8.1 表示桁数を選択する	
 8.2 通常測定データを表示する	
 8.3 通常測定データの表示項目を変える	
 8.4 高調波測定データを表示する	
高調波測定モードのときに適応します。 8.5 高調波測定データの表示項目を変える	
 8.5 高調波測定データの表示項目を変える	
 第9章 波形表示 9.1 表示するチャネルを選択する 9.2 垂直ポジションを移動する 	8-19
9.1 表示するチャネルを選択する 9.2 垂直ポジションを移動する	
9.2 垂直ポジションを移動する	9-1
	9-5
9.3 画面を分割して波形を表示する (
94 表示補問をする 94 8元補問をする	9-10
9.5 グラティクルを変える 9.5 000000000000000000000000000000000000	9-12
9.6 スケール値の表示をON/OFFする	
9.7 波形のラベル名を設定する	
9.8 波形をズームする	
9.9 高調波のベクトル表示をする	
9.10 高調波データをバーグラフ表示する	
9.11 X-Y波形を表示する	
第10章 数值演算	
10.1 測定/演算区間を設定する,演算を再実行する	10-1
10.2 デルタ演算を選択する	
10.3 ユーザー定義ファンクションを設定する10-	
10.4 皮相電力とCorrected Powerの演算式を設定する	
10.5 アベレージングをする10-	
10.6 位相差の表示方式を選択する10-	10-20

高調波測定モードのときに適応します。

10.7	高調波の解析次数を設定する	 10-22
10.8	ひずみ率の演算式を選択する	 10-24

		н <i>у</i>
第11章	波形解析	
•	11.1 演算範囲を設定する,演算を再実行する	11- <i>"</i>
	11.2 演算式を設定する,演算した波形のスケール変換をする	11-4
	11.3 FFT演算をする	
	11.4 カーソル測定をする	11-10
第1 0音	データの保存と詰み込み	
カ12早		10
	12.1 ノロッヒーナイスクトライノの使用工の注意	12- 10 c
	12.2 ろしろレアハイ 人を按続する	12-2 10-2
	12.3 SUSH 12番号を変える	12-3 10 r
	12.4 テイスジを初期1L(ノオーマツト)9つ	12-5 10-10
	2.5 設定情報を保存9る/読み込む	
	12.6 波形テータを保存する/読み込む	
	12.7 数値アータを保存する	
	12.8 ファイルの属性を変える、ファイルを消去する	
	12.9 ファイルをコピーする	
	12.10 ディレクトリ/ファイル名を変える,ディレクトリを作る	12-37
第13章	画面イメージデータの出力	
	13.1 内蔵プリンタ(オプション)にロール紙を取り付ける,紙送りをする	13- <i>'</i>
	13.2 内蔵プリンタ(オプション)に出力する	13-5
	▲ 13.3 セントロニクス対応の外部プリンタに出力する	13-8
	13.4 フロッピーディスク/SCSIデバイスに出力する	13-1′
笙1⊿音	外部トリガ出力とその他の操作	
		1/1
	△ 14.1 外部1201001	14- 1717
	14.2 入りビーノの古品/回田陣度を改定する	۲4-2 ۱ <i>۹</i> -2
	14.3 回回の衣小巴を設定する	2-44 ۱۸ د
	14.4 アクションオンドサガを設定する	14-0
第15章	モータ評価機能(モータモジュールに適用)	
	15.1 回転速度とトルクの信号を入力する	15-'
	15.2 回転センサ信号とトルクメータ信号の入力レンジを設定する	15-3
	15.3 入力フィルタを選択する	15-8
	15.4 回転速度を測定するためのスケーリング係数,パルス数,単位を設定する	15-10
	15.5 トルクを測定するためのスケーリング係数,単位を設定する	15-13
	15.6 同期速度とすべりを演算するためのモータの極数を設定する	15-15
	15.7 モータ出力を演算するためのスケーリング係数,単位を設定する	15-17
	15.8 モータ効率とトータル効率を演算する	15-19
第16章	トラブルシューティングと保守・点検	
	16.1 故障? ちょっと調べてみてください	
	162 Tラーメッセージと対処方法	
	16.3 白己診断(セルフテスト)をする	ro-2 16_۲
	16月 システムの分能を確認する	16 10 16 10
	10.4 ノヘノムUU(N窓で哐啷りつ	10-10 16 17
	□□ 10.0 电源レユーへで文探りる	10-1 40-40

索

第17章 仕様 17.1 17.2 17.4 測定ファンクション(測定項目)...... 17-2 高調波測定、データの保存と読み込み、画面イメージデータの出力 17-9 17.7 内蔵フロッピーディスクドライブ 17-10 17.8 GP-IBインタフェース 17-10 17.9 シリアル(RS-232)インタフェース......17-11 17.10 セントロニクスインタフェース 17-11 17.11 SCSIインタフェース(オプション) 17-11 17.14 本体(253710)外形図 17-14

付録

付録1	観測時間/サンプルレート/レコード長の関係	付-1
付録2	測定ファンクションの記号と求め方	
付録3	デルタ演算の求め方	
付録4	初期設定/数値データの表示順一覧表	
付録5	ASCIIヘッダファイルフォーマット	
付録6	Floatファイルフォーマット	
付録7	電力の基礎(電力/高調波/交流回路の三定数)	付-25

索引

1.1 システム構成とブロック図

システム構成

* EIA-574規格準拠(EIA-232(RS-232)規格の9ピン用)。

1

ブロック図

入力信号の流れと処理

● 電力測定モジュール 形名: 253751 / 253752

電力測定モジュールの電圧入力端子(U, 土)に入力された電圧信号は、電圧入力回路の 分圧器とOPアンプ(OP AMP)で正規化された電圧になり、A/D変換器とゼロクロス検 出回路に入力されます。

電流信号の入力には、外部の電流センサからの電圧信号を入力する電流センサ入力コネ クタ(Current Sensor)と、電流信号を直接入力する電流入力端子(I, ±)の2系統 (253752では直接入力する電流入力端子が2系統あり、計3系統)があります。電流セン サ入力の場合、センサから入力された電圧が分圧器とOPアンプで正規化された電圧に なります。直接入力の場合、電流入力端子に入力された電流信号が分流器によって電圧 に変換されてから、電流センサ入力と同様に正規化された電圧になります。正規化され た電圧は、電圧入力回路と同じ構成のA/D変換器とゼロクロス検出回路に入力されま す。

A/D変換器は、253710の内部回路から供給されるサンプリングクロックの周期(サンプ ルレート)で、入力された電圧/電流信号をサンプリングし、そのサンプリングした信号 をディジタルデータに変換します。サンプルレートは、通常測定モードでは固定の 5MS/s、高調波測定モードでは設定されたPLLソース^{*}の整数倍のサンプルレート(約 80k~160kS/s)になります。また、外部クロック入力コネクタに入力されたクロック 信号でサンプリング動作をさせることもできます。

* 高調波測定をするときは、高調波の次数を解析するために基準になる基本周期を決定する必要 があります。この基本周期を求めるための信号がPLL(phase locked loop)ソースです。 1

● モータモジュール 形名:253771

モータモジュールの回転センサ信号入力コネクタ(CH7)とトルクメータ信号入力コネク タ(CH8)に入力された信号は、分圧器とOPアンプ(OP AMP)で正規化された電圧にな り、A/D変換器とゼロクロス検出回路に入力されます。

・回転センサとトルクメータからの信号が直流電圧(アナログ入力)の場合

A/D変換器は、253710の内部回路から供給されるサンプリングクロックの周期(サ ンプルレート)で、入力された電圧/電流信号をサンプリングし、そのサンプリングし た信号をディジタルデータに変換します。サンプルレートは、通常測定モードでは 固定の5MS/s、高調波測定モードでは設定されたPLLソースの整数倍のサンプルレ ート(約80k~160kS/s)になります。また、外部クロック入力コネクタに入力された クロック信号でサンプリング動作をさせることもできます。

・回転センサからの信号がパルス信号の場合

A/D変換器のディジタルデータの代わりにカウント値をデータとして出力します。 カウンタ(Counter)では、ゼロクロス検出回路から出力される信号の立ち上がりから 次の立ち上がりまで(1周期)を基準クロック(内部クロック)でカウントし、カウント 値を更新します。

● PZ4000本体 形名:253710

モジュールのA/D変換器とゼロクロス検出器の出力は、フォトアイソレータ(Photo Isolator)を介して、253710本体に送られます。253710に送られてきた最大8チャネ ル分のA/D変換されたサンプリングデータとゼロクロスデータは、設定された観測時間 (1-15ページ参照)によって自動的に決められる所定のサンプルレートで、外部トリガや 外部クロックの状態とともに、アクイジションメモリ(ACQ memory)に記憶されます。 アクイジョンメモリに記憶されたサンプリングデータから、演算処理回路(DSP)が電 圧/電流/有効電力(高調波測定モードのときは無効電力も)を求め、表示処理回路 (Display ASIC)が数値や波形などの表示データへの処理をします。

交流の基本測定項目(電圧/電流/有効電力(高調波測定モードのときは無効電力も))を正確に求めるには、入力信号の周期に同期した区間で平均化する必要があります。そのため、演算処理回路では、各チャネルのゼロクロスデータや、外部クロックや外部トリガの状態などを元に、平均化処理をして、基本測定項目を求めます。

また,演算処理回路では,基本測定項目から,皮相電力/無効電力(通常測定モードのとき)/力率/位相差/インピーダンス/Σなどの測定ファンクションのデータも演算しています。

1.2 測定モードと測定/演算区間

測定モードには、通常測定と高調波測定の2つのモードがあります。

通常測定モードと測定ファンクション(数値データの種類) 《操作説明は5.1節》

通常測定モードのときの測定ファンクションのデータ(数値データ)は,後述の「測定/演算 区間」で設定された区間のサンプリングデータ^{*}から測定/演算されます。

* サンプリングデータについては、「1.3 データ(電圧/電流信号)の取り込み」をご覧ください。

● 測定ファンクション(数値データの種類)

- ・電力測定モジュールごとの測定ファンクション 次の29種類の数値データが求められます。各測定ファンクションのデータの求め方の詳細は、「付録2」をご覧ください。 U(電圧Urms, Umn, Udc, Uac), I(電流Irms, Imn, Idc, Iac), P(有効電力), S(皮相電力), Q(無効電力), λ(力率), φ(位相差), fU/fI(電圧/電流の周波数), U+pk/U-pk(電圧の最大値/最小値), I+pk/I-pk(電流の最大値/最小値), CfU/CfI(電圧/電流のクレストファクタ(波高率)), FfU/FfI(電圧/電流のフォームファクタ(波形率)), Z(負荷回路のインピーダンス), Rs/Xs(抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている負荷回路の抵抗/リアクタンス), Rp/Xp(RとLおよびCが並列に接続されている負荷回路の抵抗/リアクタンス), Pc(Corrected Power)
- ・電力測定モジュール間の平均または総和の測定ファンクション(Σファンクション) 次の19種類の数値データが求められます。各測定ファンクションのデータの求め方 の詳細は、「付録2」をご覧ください。 U Σ (電圧の平均Urms Σ , Umn Σ , Udc Σ , Uac Σ), I Σ (電流の平均Irms Σ , Imn Σ , Idc Σ , Iac Σ), P Σ (有効電力の総和), S Σ (皮相電力の総和), Q Σ (無効電力の 総和), $\lambda \Sigma$ (力率の平均), $\phi \Sigma$ (位相差の平均), Z Σ (負荷回路のインピーダンスの平 均), Rs Σ /Xs Σ (RLLおよびCが直列に接続されている負荷回路の抵抗/リアクタン スのそれぞれの平均), Rp Σ /Xp Σ (RLLおよびCが並列に接続されている負荷回路 の抵抗/リアクタンスのそれぞれの平均), Pc Σ (Corrected Powerの総和)

・ **効率(Σファンクション)** η(効率1), 1/η(効率2), 次ページの「●効率」をご覧ください。

 モータモジュールの測定ファンクション 次の7種類の数値データが求められます。各測定ファンクションのデータの求め方の 詳細は、「15章」をご覧ください。
 Speed(回転速度)、Torque(トルク)、Sync(同期速度)、Slip(すべり)、Pm(モータ出 カ-メカニカルパワー)、モータ効率(ηmAまたはηmB)、トータル効率(ηmAまたは ηmB)

● 電圧と電流の求め方

測定ファンクションの電圧(U)と電流(I)には、次の4種類があります。

・Urms, Irms(真の実効値)

電圧または電流の真の実効値です。1周期中の各瞬時値を2乗して、その平均を求め、さらにその平方根を求めます。f(t)は入力信号の式、Tは入力信号の1周期を表します。

・Umn, Imn(平均値整流実効値校正)

電圧または電流の1周期分を整流して、その平均を求め、入力信号が正弦波のとき真の実効値になるように係数を掛けたものです。ひずみ波形や直流波形の入力信号の場合は、真の実効値と異なる値になります。f(t)は入力信号の式、Tは入力信号の1周期を表します。

Umnttalmn=
$$\frac{\pi}{2\sqrt{2}} \cdot \frac{1}{T} \int_{0}^{T} |f(t)| dt$$

・Udc, Idc(単純平均)

電圧または電流の1周期分の平均値です。直流だけの入力信号の平均値や、交流の入 力信号に重畳した直流成分を求めるときに有効です。

$$Udc \ddagger t (dt) dc = \frac{1}{T} \int_0^T f(t) dt$$

・Uac, lac(交流成分)

電圧または電流の交流成分です。入力信号の真の実効値の2乗から直流成分の2乗を 差し引いたものの平方根です。

$$Uac = \sqrt{Urms^2 - Udc^2}$$
, $\pm tcl tlac = \sqrt{Irms^2 - Idc^2}$

● エレメント番号

本機器背面にあるスロットに入力モジュールが装着されているとき、そのスロットや入 カモジュールを合わせて、エレメントといいます。本機器は、最大4つのエレメントを もつことができ、エレメント番号は1~4まであります。電力測定モジュールの場合、 それぞれのエレメントに1系統の電圧と電流を入力できます。前述の「・電力測定モ ジュールごとの測定ファンクション」の記号のあとに、このエレメント番号が付くこと により、どのエレメントの数値データであるかがわかります。たとえば、「Urms1」 は、エレメント1の電圧で真の実効値を表します。

● 結線方式

各エレメントに入力される信号の組み合わせ方法が結線方式です。結線方式は、電力測 定モジュールが装着されているエレメントの数によって、選択肢が異なります。1種類 の結線方式しか選択できなかったり、2種類の結線方式を選択できたりします。2種類 の結線方式を選択した場合は、前述の「・電力測定モジュール間の平均または総和の測 定ファンクション(Σファンクション)」の記号のあとに、「A」または「B」が付くこ とにより、どちらの結線方式の数値データであるかがわかります。

たとえば、「Urms ≥ A」は、結線方式Aで組み合わされた各電力測定モジュールの電圧の平均で、真の実効値を表します。

● 効率

 η (効率1)は(P \geq B)/(P \geq A), 1/ η (効率2)は(P \geq A)/(P \geq B)によって求められます。 η は結線Aに対する結線Bの効率, 1/ η は結線Bに対する結線Aの効率になります。

高調波測定モードと測定ファンクション(数値データの種類) 《操作説明は5.1節》

高調波測定モードのときの測定ファンクションのデータ(数値データ)は、後述の「測定/演 算区間」で設定された区間のサンプリングデータ^{*}から測定/演算されます。

- * サンプリングデータについては、「1.3 データ(電圧/電流信号)の取り込み」をご覧ください。
- 高調波測定ファンクション(数値データの種類)

・電力測定モジュールごとの高調波測定ファンクション

次の28種類の数値データが求められます。各測定ファンクションのデータの求め方の詳細は,「付録2」をご覧ください。

	()P	内の文字/嶺	数值		
測定ファンクション				全体	
	dc	1	k	(()無し)	
U()	\bigcirc	0	0	0	○:数値データあり
I()	0	0	0	0	:数値データなし
P()	0	0	0	0	
S()	0	0	0	0	
Q()	常に0	0	0	0	
λ()	0	0	0	0	
φ()		0	0	—	
φU()		—	0	-	
φI()		—	0	-	
Z()	0	0	0	-	-
Rs()	0	0	0	—	
Xs()	0	0	0	—	
Rp()	0	0	0	—	
Xp()	0	0	0	—	-
Uhdf()	0	0	0	—	-
lhdf()	0	0	0	—	
Phdf()	0	0	0	—	
Uthd		_	_	0	
lthd		_	_	0	
Pthd		_	_	0	
Uthf		_		0	-
lthf		_		0	
Utif		_		0	
ltif		_		0	-
hvf		—		0	-
hcf	_	_		0	1
fU	_	_	_	0	1
fl	_	_		0	-

- ・()付きの測定ファンクションは、()内に入る文字/数値によって、それぞれ次の意味を持ちます。
 - ・dc:直流成分の数値データを表します。
 - ・1:基本波の数値データを表します。
 - ・k:2次からN次までの数値データを表します。Nは解析次数上限値(17.5節参 照)です。解析次数上限値は、PLLソースの周波数によって最大500次までの範 囲で自動的に決まります。
- ・全体:測定ファンクションのあとに()が付きません。このときは、基本波と全 高調波などの全波形を対象にした数値データを表します。
- ・Uhdf~hcfは、高調波特有の特性を表す測定ファンクションです。求め方の詳細は、「付録2」をご覧ください。
- ・fU(電圧)またはfl(電流)のうち,PLLソースに選択されている信号の周波数を表示 します。選択されていない方の表示は、データなし表示[------]になります。

1

・電力測定モジュール間の電圧と電流の位相差(φ)を表す高調波測定ファンクション
 ・ ⊕ U1-U2

エレメント1の電圧の基本波U1(1)に対するエレメント2の電圧の基本波U2(1)の 位相差。

· φU1-U3

エレメント1の電圧の基本波U1(1)に対するエレメント3の電圧の基本波U3(1)の 位相差。

· φU1-I1

エレメント1の電圧の基本波U1(1)に対するエレメント1の電流の基本波U1(1)の位相差。

· • 01-12

エレメント1の電圧の基本波U1(1)に対するエレメント2の電流の基本波I2(1)の位相差。

· φU1-I3

エレメント1の電圧の基本波U1(1)に対するエレメント3の電流の基本波l3(1)の位相差。

・電力測定モジュール間の平均または総和の高調波測定ファンクション

(Σファンクション)

次の6種類の数値データが求められます。測定ファンクションの求め方の詳細は, 「付録2」をご覧ください。

	()内の文字/数値				
測定ファンクション				全体	
	dc	1	k	(()無し)	
UΣ()	0	0	0	0	○:数値データあり
ΙΣ()	0	0	0	0	
ΡΣ()	0	0	0	0	
SΣ()	0	0	0	0	
QΣ()	常に0	0	0	0	
λΣ()	0	0	0	0	

・()付きの測定ファンクションは、()内に入る文字/数値によって、それぞれ次の意味を持ちます。

- ・dc:直流成分の数値データを表します。
- ・1:基本波の数値データを表します。
- ・k:2次からN次までの数値データを表します。Nは解析次数上限値(17.5節参 照)です。解析次数上限値は、PLLソースの周波数によって最大500次までの範 囲で自動的に決まります。
- ・全体:測定ファンクションのあとに()が付きません。このときは、基本波と全 高調波などの全波形を対象にした数値データを表します。

・モータモジュールの測定ファンクション

次の7種類の数値データが求められます。測定ファンクションの求め方の詳細は, 「15章」または「付録2」をご覧ください。

	()内の文字/数値				
測定ファンクション				全体	
	dc	1	k	(()無し)	
Torque()	0	0	0	0	○:数値データあり
Speed, Sync,					―:数値データなし
Slip, Pm,					
モータ効率 (η mAまたは η mB),	_	—	—	0	
トータル効率 (η mAまたは η mB)					

- ・()付きの測定ファンクションは、()内に入る文字/数値によって、それぞれ次の意味を持ちます。
 - ・dc: 直流成分の数値データを表します。
 - ・1:基本波の数値データを表します。
 - ・k:2次からN次までの数値データを表します。Nは解析次数上限値(17.5節参 照)です。解析次数上限値は、PLLソースの周波数によって最大500次までの範 囲で自動的に決まります。
- ・全体:測定ファンクションのあとに()が付きません。このときは、基本波と全 高調波などの全波形を対象にした数値データを表します。

● エレメント番号

本機器本体背面にあるスロットに入力モジュールが装着されているとき、そのスロット や入力モジュールを合わせて、エレメントといいます。本機器は、最大4つのエレメン トをもつことができ、エレメント番号は1~4まであります。電力測定モジュールの場 合、それぞれのエレメントに1系統の電圧と電流を入力できます。前述の「・電力測定 モジュールごとの高調波測定ファンクション」の記号のあとに、このエレメント番号が 付くことにより、どのエレメントの数値データであるかがわかります。 たとえば、「U1(2)」は、エレメント1の2次高調波電圧を表します。

● 結線方式

各エレメントに入力される信号の組み合わせ方法が結線方式です。結線方式は、電力測 定モジュールが装着されているエレメントの数によって、選択肢が異なります。1種類 の結線方式しか選択できなかったり、2種類の結線方式を選択できたりします。2種類 の結線方式を選択した場合は、前述の「・電力測定モジュール間の平均または総和の高 調波測定ファンクション(Σファンクション)」の記号のあとに、「A」または「B」が 付くことにより、どちらの結線方式の数値データであるかがわかります。 たとえば、「USA(2)」は、結線方式Aで組み合わされた各電力測定モジュールの2次 高調波電圧の平均を表します。

● PLLソース 《操作説明は6.4節》

高調波測定をするときは、高調波の次数を解析するために基準になる基本周期(基本波の周期)を決定する必要があります。この基本周期を求めるための信号がPLL(phase locked loop)ソースです。高調波測定をする対象波形と同周期の信号を設定してください。また、ひずみや変動が少ない入力信号をPLLソースに選択したほうが、安定して高調波測定ができます。理想的な信号としては、測定レンジ(1.3節参照)の50%以上の振幅がある矩形波が考えられます。

1

- 測定/演算区間 《操作説明は10.1節》
 - 通常測定モードのとき
 - 区間設定の方法には3種類あります。選択した区間設定の方法で、測定/演算区間を設 定し、設定された区間のサンプリングデータ^{*1}から数値データが測定/演算されます^{*2}。
 - *1 サンプリングデータについては、「1.3 データ(電圧/電流信号)の取り込み」をご覧ください。
 - *2 区間設定の方法がゼロクロス設定の場合,電圧や電流の最大値(Peak)の数値データは,区 間設定に関わらず全画面(表示レコード長)が測定/演算区間です。したがって,電圧や電流 の最大値から求められるU+pk/U-pk/I+pk/I-pk/CfU/CfI/FfU/FfIの各測定ファンクション も,全画面が測定/演算区間になります。
 - ・ゼロクロス設定

基準になる入力信号が、レベルゼロ(振幅の中央値)を立ち上がりスロープ*で横切る (ゼロクロス)画面内の最初の点から、レベルゼロを立ち上がりスロープで横切る画面 内の最後の点までを測定/演算区間にします。画面内に立ち上がりスロープが1つま たは無いときは、画面内すべてが測定/演算区間になります。ゼロクロス設定の場合 は、エレメントごとに、どの入力信号のゼロクロスに同期させるかの設定ができま す。同期の対象になる信号は、CH1~CH8と外部クロックから選択できます。

* 低いレベルから高いレベルになる(立ち上がり),または高いレベルから低いレベルになる(立 ち下がり)というような信号の動きをスロープといいます。

・カーソル設定

画面内に置かれた2本の垂直のカーソルに挟まれた区間(t1-t2)が,測定/演算区間に なります。表示している波形を見ながらカーソルを移動して,測定/演算区間を設定 できます。

・外部トリガ設定

外部トリガ入力コネクタに入力された信号が、HiまたはLoのどちらかの選択された 状態のとき、1つめの区間が測定/演算区間になります。

● 高調波測定モードのとき

区間設定の方法は、カーソル設定だけです。設定された区間のサンプリングデータから 数値データが測定/演算されます。

画面内に置かれた2本の垂直のカーソル間(8192点のサンプリングデータ)が測定/演算 区間になります。表示している波形を見ながらカーソルを移動して,測定/演算区間を 設定できます。

結線方式 《操作説明は5.2節》

各エレメントに入力される信号の組み合わせ方法が結線方式です。結線方式は、電力測定 モジュールが装着されているエレメントの数によって、選択肢が異なります。1種類の結 線方式しか選択できなかったり、2種類の結線方式を選択できたりします。結線方式は、 次の5種類から選択します。

1P2W(単相2線式), 1P3W(単相3線式), 3P3W(三相3線式), 3V3A(3電圧3電流計法), 3P4W(三相4線式)

電圧/電流/有効電力/皮相電力/無効電力/力率/位相差などのΣファンクションを求めると きに、結線方式によって、どのエレメントと数値データをどのように組み合わせるかが変 わります。結線方式とΣファンクションの求め方の関係については、「付録2」をご覧く ださい。

表示桁数 《操作説明は8.1節》

電圧/電流/有効電力/皮相電力/無効電力/力率などの最大表示桁数(最高表示分解能)を,5 桁または6桁のうちから選択できます。ただし,実際に表示される桁数は,電圧レンジと 電流レンジの組み合わせや自動の桁上がり動作によって,最大表示桁数よりも少ない場合 があります。 1

1.3 データ(電圧/電流信号)の取り込み

サンプリングデータ

本機器は、電圧と電流の信号を所定のサンプルレート^{*1}でサンプリングし、アクイジショ ンメモリ^{*2}にサンプリングデータとして取り込みます。サンプリングデータは、測定ファ ンクションのデータ(数値データ)や、画面上の波形を表示するデータとして処理されま す。また、サンプリングデータを、波形データとして本機器から記憶媒体に保存できま す。保存された波形データは、記憶媒体から本機器に読み込まれて、再度、数値データや 波形を表示するデータとして処理することができます。

*1 サンプルレートは、1秒間にアクイジションメモリに取り込めるサンプリングデータの点数を 表します。たとえば、サンプルレート10kS/sは、1秒間に10000点のサンプリングデータを取 り込みます。本機器では、後述の観測時間と設定レコード長によって自動的にサンプルレート が決まります。観測時間/サンプルレート/レコード長の関係は、「付録1」をご覧ください。 *2 アクイジションメモリは、サンプリングデータが取り込まれるメモリです。

入力モジュール

入力モジュールは、電圧や電流の信号を入力する端子を備えたもので、本機器(形名 253710)の背面にあるスロットに装着して使用します。種類はivページの「入力モジュー ル」をご覧ください。

エレメントとチャネル

● エレメント

本機器背面にあるスロットに入力モジュールが装着されているとき、そのスロットや入 カモジュールを合わせて、エレメントといいます。本機器は、最大4つのエレメントを もつことができ、エレメント番号は1~4まであります。電力測定モジュールの場合、 それぞれのエレメントに1系統の電圧と電流を入力できます。

● チャネル

本機器では,各エレメントの電圧と電流の入力端子に対して,次のようにチャネル番号 を割り当てています。

エレメント番号	電圧	電流	
1	CH 1	CH 2	
2	CH 3	CH 4	
3	CH 5	CH 6	
4*	CH 7	CH 8	

* モータモジュールが挿入されているときは、CH7とCH8にセンサからの入力電圧が割り当てら れます。ただし、モータモジュールを適用できるのは、ファームウエアパージョン2.01以降の 製品(PZ4000)です。 電圧や電流の信号を入力モジュールに直接入力する場合,固定レンジとオートレンジの2 種類があります。波形を表示するときは,垂直軸方向の表示範囲が,測定レンジに相当し ます。波形の表示については,「1.6 波形表示」をご覧ください。

● 固定レンジ

いくつかの選択肢の中から、それぞれのレンジを選択します。選択されたレンジは、入 力信号の大きさが変わっても切り替わりません。電力測定モジュールの電圧の場合、選 択肢の最大は「2000Vpk」、最小は「30Vpk」です。

● オートレンジ

入力信号の大きさによって、それぞれ自動的にレンジを切り替えます。切り替えられる レンジの種類は、固定レンジと同じです。ただし、電力測定モジュールの数値データを 測定/演算しない設定(Measure ModeがOFFのとき)にした場合、オートレンジの選択 はできますが、レンジは変わりません。

● 電力レンジ

電力測定モジュールの有効電力/皮相電力/無効電力の測定レンジ(電力レンジ)は,結線 方式,電圧レンジおよび電流レンジから決まり,次のようになります。具体的な電力レ ンジの数値は,「5.3 直接入力のときの測定レンジを設定する」をご覧ください。

結線方式	電力レンジ
1P2W(単相2線式)	電圧レンジ×電流レンジ
1P3W(単相3線式) 3P3W(三相3線式) 3V3A(3電圧3電流計法)	電圧レンジ×電流レンジ×2 (対象になっている各エレメントの電圧や電流レンジが, 同じレンジの場合)
3P4W(三相4線式)	電圧レンジ×電流レンジ×3 (対象になっている各エレメントの電圧や電流レンジが, 同じレンジの場合)

スケーリング 《操作説明は5.5節》

電力測定モジュールに、外部の電流センサを介して電流の信号を入力する場合、または外部のPT(変圧器, potential transformer)/CT(変流器, current transformer)を介して電圧 や電流の信号を入力する場合、それぞれ換算比や係数を設定できます。

● 外部の電流センサを介して電流の信号を入力する場合

シャントやクランプなどの電流センサの出力を、電力測定モジュールの電流センサ (current sensor)用コネクタに入力して測定できます。1Aの電流が流れたときに、電 流センサの出力が何mVになるか(換算比)を設定し、電流入力端子に電流を直接入力し たときの数値データや波形を表示するデータに換算できます。

測定ファンクション	換算比	換算前のデータ	換算結果
	E	ls(電流センサの出力)	Is/E
有効電力P	E	Ps	Ps/E
皮相電力S	E	Ss	Ss/E
無効電力Q	E	Qs	Q _S /E
電流の最大値/最小値lpk	E	lpks(電流センサの出力)	lpks/E

1

● 外部のPT/CTを介して電圧や電流の信号を入力する場合

PTの2次側の出力を直接入力するときと同じ電圧入力端子に入力し,CTの2次側の出力 を直接入力するときと同じ電流入力端子に入力して測定できます。PT比,CT比,電力 係数(電圧や電流から求める電力に掛ける係数)を設定し,電圧/電流入力端子に電圧や 電流を直接入力したときの数値データや波形を表示するデータに換算できます。

則定ファンクション	換算前のデータ	換算結果	
電圧U	U ₂ (PTの2次出力)	U ₂ ×P	P:PT比
電流	l2(CTの2次出力)	I ₂ ×C	C:CT比
有効電力P	P ₂	P2×P×C×SF	SF:電力係数
支相電力S	S ₂	S2×P×C×SF	
無効電力Q	Q ₂	Q2×P×C×SF	
電流の最大値/最小値lpk	lpk ₂ (CTの2次出力)	lpk ₂ ×C	

入力フィルタ(ラインフィルタとゼロクロスフィルタ) 《操作説明は5.6節》

フィルタは2種類あります。本機器は、入力信号に同期して測定をしています。したがって、入力信号の周波数を正しく測定することが必要です。

● ラインフィルタ

測定回路に挿入されます。インバータ波形やひずみ波形などのノイズを除去します。 カットオフ周波数を選択できます。

● ゼロクロスフィルタ

周波数測定回路だけに挿入されます。入力信号の振幅の中央値レベルを入力信号が横切 ることをゼロクロスといいます。このゼロクロスの点を、より精度よく検出するための フィルタです。カットオフ周波数を選択できます。本機器は、測定レンジの約3.5%の ヒステリシスをもたせて、ゼロクロスを検出しています。ゼロクロス検出は、測定/演 算区間の決定、周波数の測定、PLLソース、後述のHFオートモードやHFノーマルモー ドのトリガをかける条件に使用されます。 観測時間 《操作説明は6.1節》

観測時間は、1画面分の時間幅を表します。

● 通常測定モードのとき

設定範囲は、10μs~1ks^{*}です。この観測時間の設定によってサンプルレートが変わ り、そのサンプルレートでサンプリングデータがアクイジションメモリに取り込まれま す。

波形の表示については、「1.6 波形表示」をご覧ください。

* 1ksは, 1000秒(16分40秒)を示します。

● 高調波測定モードのとき

高調波測定モードの観測時間*は、PLLソース(1-9ページ参照)の基本周波数から求められるサンプルレートと、設定レコード長(次項参照)によって自動的に決まります。観測時間/サンプルレート/レコード長の関係は、「付録1」をご覧ください。

* 高調波測定モードの場合,サンプルレートがPLLソースという外部の信号(測定対象の信号 または外部クロックの信号)に依存するため,通常測定モードと違い,観測時間を一律に設 定できません。高調波測定モードでは,設定レコード長分のサンプリングデータをアクイジ ションメモリに取り込む時間が1画面分の時間になります。

レコード長 《操作説明は6.2節》

● 通常測定モードのとき

本機器では、1チャネル当たりのアクイジションメモリのデータ容量を設定レコード長 といい、100k、1M(オプション)、4M(オプション)ワードの中から選択できます。 アクイジションメモリに取り込まれたサンプリングデータが、P-P圧縮(1-27ページ参 照)され画面に表示されます。この画面に表示されるサンプリングデータの点数を表示 レコード長といいます。表示レコード長の大きさは、観測時間の設定によって変わり、 最大で設定レコード長と同じになります。観測時間が長いときは、設定レコード長と表 示レコード長は同じですが、観測時間が短いときは、表示レコード長が設定レコード長 より短くなります。

● 高調波測定モードのとき

設定レコード長を,100k,1M(オプション),4M(オプション)ワードの中から選択できます。高調波測定モードの場合,表示レコード長と設定レコード長は、常に同じです。

レコード長の分割 《操作説明は6.2節》

アクイジションメモリを半分にし、見かけ上メモリが2つあるようにして、片方ずつサン プリングデータを取り込むことができます。

アクイジションメモリが1つだけ(分割しないとき)の場合、サンプリングデータの取り込み が途中で中断(ABORT操作)すると、そのサンプリングデータは無効になり、数値データの 測定/演算/表示や波形の表示ができません。通常の停止操作をしたときは、表示レコード 長分のサンプリングデータを取り込んでから、取り込みを停止します。したがって、数値 データの測定/演算/表示や波形の表示ができます。

アクイジションメモリを2つ(分割したとき)にして、交互にサンプリングデータを取り込む と、一方のメモリへのサンプリングデータの取り込みが途中で中断(ABORT操作)しても、 1回前のサンプリングデータがもう一方のメモリに残っているため、そのデータを元にし て数値データの測定/演算/表示や波形の表示ができます。通常の停止操作をしたときも、 サンプリングデータの取り込みを中断し、1回前のサンプリングデータを元に数値データ や波形の表示をします。レコード長の分割機能は、連続してサンプリングデータを取り込 んでいるとき、表示されている波形を見てその波形の解析をしたいときに利用できます。

・分割したとき

タイムベース 《操作説明は6.3節》

本機器の初期設定では、データのサンプリングのタイミングは、本機器内部のタイムベー ス回路から出力されるクロック信号によってコントロールされます。これを外部から入力 するクロック信号でコントロールすることができます。周期が変化する信号を測定すると きや、測定対象のクロック信号に同期して信号を測定するときに便利です。 また、高調波測定の場合、基本周波数(基本波の周波数)に対して整数倍の周波数を持つ外 部のクロック信号に同期して測定することで、より正確な高調波測定ができます。

ゼロレベル補正 《操作説明は4.4節》

本機器の内部回路で入力信号ゼロの状態をつくり、そのときのレベルを、ゼロレベルとす ることをゼロレベル補正といいます。本機器の仕様(17章参照)を満たすためには、このゼ ロレベル補正をする必要があります。測定モード、測定レンジおよび入力フィルタを変更 したときには、自動的にゼロレベルの補正がされますが、長時間、測定モード、測定レン ジおよび入力フィルタを変更していないときは、本機器周囲の環境変化でゼロレベルが変 化している場合があります。このようなときに、強制的にゼロレベルの補正をすることも できます。

NULL機能 《操作説明は4.5節》

NULL機能をONにしたときのUdcとIdc(通常測定モードの電圧/電流の単純平均の数値データ),およびSpeedとTorque(モータモジュール使用時で,センサからの入力信号が直流電 圧の場合)が,NULL値として設定されます。電圧と電流のサンプリングデータからNULL 値が差し引かれます。このため,すべての測定ファンクションが,NULL値の影響を受け ます。NULL値を設定するときは,できるだけ電圧や電流の測定レンジを小さくすること をおすすめします。小さい測定レンジのほうが,測定分解能が上がり,NULL値をより正 しく測定できます。

1.4 トリガ

トリガは、アクイジションメモリに取り込まれるサンプリングデータを、波形として画面 に表示するきっかけになるものです。設定されたトリガ条件が成立して、波形を画面に表 示する状態になることを「トリガがかかる」といいます。また、画面に表示されている波 形の元になっているサンプリングデータから、数値データが求められます。

トリガソース 《操作説明は7.2節》

設定されたトリガ条件の対象となる信号をトリガソースといいます。

- トリガスロープ 《操作説明は7.3節》 低いレベルから高いレベルになる(立ち上がり),または高いレベルから低いレベルになる (立ち下がり)というような信号の動きをスロープといいます。このスロープをトリガ成立 条件の1つの項目として,トリガスロープといいます。
- トリガレベル 《操作説明は7.3節》 トリガスロープの通過レベルや、トリガソースの状態を判定するレベルをトリガレベルと いいます。
- トリガタイプ 《操作説明は7.3,7.4節》 トリガの種類です。エッジトリガ、ウインドウトリガの2種類があります。
 - エッジトリガ

トリガソースのスロープが、あらかじめ設定したトリガレベルに対して、立ち上がるか 立ち下がると、トリガがかかります。トリガソースとして、CH1~CH8の入力信号と 外部トリガ入力信号の中から選択できます。

● ウインドウトリガ

ある一定のウインドウ幅(Width)を設定し、トリガソースのレベルがそのウインドウ幅 に入る(IN)、またはウインドウ幅から出る(OUT)のどちらかでトリガがかかります。

トリガモード 《操作説明は7.1節》

画面表示を更新する条件を設定します。トリガモードには、大きく分けてオフモードとオンモードがあります。

● オフモード

トリガ条件の成立/不成立に関係なく、サンプリングデータの取り込みをスタートした ときから表示レコード長分のデータをアクイジションメモリに取り込み、そのデータを 表示するモードです。トリガ条件の成立/不成立に関係なく更新されるので、トリガの 設定をする必要がない利点がありますが波形の表示状態が一定に保たれません。

● オンモード

Note _

オンモードは、5種類あります。それぞれのモードにあった条件が成立したとき、トリ ガがかかり、波形の表示を更新します。

トリガがかかってサンプリングデータを取り込み、画面に表示するときのしくみを下図に示します。

例として,次項のトリガポジションとトリガ点(トリガがかかった時点)が一致していて,トリ ガポジションが画面の左端にある場合を考えます。

この場合,サンプリングデータの取り込みをスタートし,トリガがかかると,トリガ点から表示レコード長分のデータが表示されます。

・オートモード

一定時間(約100ms,タイムアウト時間といいます)内にトリガがかかったときは, 表示を更新します。タイムアウト時間内にトリガがかからなかったときは,タイム アウト時間を経過したとき,表示を自動更新します。

・オートレベルモード

タイムアウト時間内にトリガがかかったときは、オートモードと同じ動作をしま す。タイムアウト時間内にトリガがかからなかったときは、トリガソースの振幅の 中央値を検出し、トリガレベルを自動的に中央値に変更してトリガ(エッジトリガ)を かけ、表示を更新します。

・ノーマルモード

トリガがかかったときだけ,表示を更新します。トリガがかからないときは,表示 を更新しません。

・HFオートモード

トリガソースのゼロクロス検出回路の出力を、トリガ条件の対象信号にします。ゼロクロスフィルタを設定すると、より高周波ノイズの影響を受けにくくなり、予期しないところでトリガがかかるのを防ぐことができます。このモードは、トリガソースの振幅の中央値レベルをトリガソースが横切る点(測定レンジの約3.5%のヒステリシスあり)でトリガをかけ、表示を更新するため、トリガレベルの設定は無効です。タイムアウト時間内にトリガがかかったとき、かからなかったときの動作は、オートモードと同じです。

・HFノーマルモード

トリガ条件の対象信号と、トリガレベルのしくみについては、HFオートモードと同じです。トリガがかかったとき、かからないときの動作は、ノーマルモードと同じです。
トリガポジション 《操作説明は7.5節》

アクイジションメモリに取り込まれるサンプリングデータのうち、どの部分を波形表示す るかを、トリガポジションで設定します。次項のトリガディレイの設定がOsのとき、トリ ガ点とトリガポジションは一致します。このような状態で、トリガ点よりも前のサンプリ ングデータを画面に表示したいときは、トリガポジションを画面左端から右に移動してか ら、サンプリングデータを取り込みます。たとえば、トリガポジションを画面の水平軸方 向の中心(50%点)に移動すると、トリガポジションから左側半分の画面には、トリガ点よ りも前の時間のデータが表示されます。トリガポジションよりも前の部分をプリトリガ部 といい、トリガポジションよりもあとの部分をポストトリガ部といいます。前述の観測時 間の設定を変えると、トリガポジションを中心に表示範囲が変わります。

トリガディレイ 《操作説明は7.6節》

トリガポジションは、トリガディレイがOsのときにトリガ点と一致します。トリガディレイの機能を使うと、トリガがかかってから所定の時間(遅延時間といいます)だけ遅れて取り込まれたデータを表示できます。

トリガディレイが0sのとき

トリガディレイを設定したとき

1.5 数值表示

数値データを表示できます。通常測定モードのときと、高調波測定モードのときで、表示 形態が異なります。また、画面を上下半分に分割して、後述の波形表示と同時に表示する こともできます。

通常測定モードの数値表示 《操作説明は8.2,8.3節》

● 表示項目数の選択

項目数を8個~All(すべて表示)の間で選択できます。波形と同時に表示するときは,選 択した項目数の半分が表示されます。1画面ではすべてのデータを表示しきれません。 これを補うため,表示項目をスクロールして,次のデータを表示できます。

・8個表示の例

	Urms1	5.1290 V	
測	Umn1	4.5265 V デ	
定 フ	Udc 1	1.1130 V タ	
アン	Uac1	5.0068 V	
2	Irms1	4.9235 A	
É	Imn1	4.9231 A	
	Idc1	-0.0434 A	
	Iac1	4.9233 A	

All表示の例

エレメントと結線方式

測	Urms[V Umn [V	Element1] 5.1290] 4.5265	Element2 5.1124 4.5112	Element3 5.1293 4.5263	Element4 5.1460 4.5548	ΣA 5.1290 4.5265	ΣB 5.1124 4.5112	٦
正		1 1.1130	1.1057	1.1140 E 00C0	I.1001	1.1130 E 00C9	1.1057	
7		1 4 9225	4.3314	4 9420	49 269	4 9225	4.3314	
-	Inn [0	1 4.5233	4.3043	4.9430	49.363	4.5233	4.3043	
アー		1 -0 0434	-0.0394	-0 0446	-0.527	-0.0434	-0.0394	
·		1 4 9233	4 9041	4 9428	49 366	4 9233	4 9041	
- V	P IN	1 -0.056	-0.048	-0.058	-0.00039k	-0.056	-0.048	
ク'	S EVA	1 25.253	25.073	25.354	0.25405k	25.253	25.073	
5.	0 [var	1 25.253	25.073	25.354	0.25405k	-25.253	-25.073	
~	λĽ	1-0.00220	-0.00193	-0.00227	-0.00155	-0.00220	-0.00193	レア
E	¢ [°	1 -90.126	-90.111	-90.130	90.089	-90.126	-90.111	11
<u>,</u>	fU [Hz	1 50.00	50.00	50.00	50.01			
~	fI [Hz	l 1.000k	1.000k	1.000k	1.000k			19
	U+pk[V	1 9.8400	9.7992	9.8399	9.9583			-
	U-pk(V	1 -7.7564	-7.7789	-7.7748	-7.6748			
	I+pk[A	1 7.0828	7.0622	7.1137	70.618			
	I-pk[A	1 -7.1689	-7.1589	-7.2174	-71.533			
	CfU [1 1.919	1.917	1.918	1.935			
	CfII	1 1.456	1.460	1.460	1.449			
	FfU [1 1.259	1.259	1.259	1.255			
	Ff I I	1 1.111	1.111	1.111	1.111			
	Z [Ω	1 1.04173	1.04244	1.03770	104.235m	1.04173	1.04244	
	Rs [Ω	1-2.29685m	-2.01449n	-2.35409m	-0.000	-2.29685 n	-2.01449m	

● 表示項目の変更

表示項目を選択して、その位置に表示する数値データを変更できます。

高調波測定モードの数値表示 《操作説明は8.4, 8.5節》

● 表示項目数の選択

項目数を8個または16個のどちらかを選択できます。波形と同時に表示するときは,選択した項目数の半分が表示されます。1画面ではすべてのデータを表示しきれません。 これを補うため,表示項目をスクロールして,次のデータを表示できます。

・8個表示

	U1	5.0545 V
101	I1	4.7348 A
測 定	P1	0.067 W
ファ	S1	0.082 VA
ンク	Q1	0.047 var ↓
Ś	U1(1)	4.0427 V
シ	I 1(1)	0.0172 A
	P 1(1)	0.069 W

・16個表示

调	U1	5.0545 V	S1 (1)	$0.070 \mathrm{VA}$
定	11	4.7348 A	Q1 (1)	0.007 var 📋
ノア	P1	$0.067 \mathrm{W}$	λ1 (1)	0.99552
シク	¥ S1	$0.082\mathrm{VA}$	¢1 (1)	5.423 ° 🔸
ショ	Q1	0.047 var	¢U1 (2)	-0.134 °
ン	U1 (1)	$4.0427~\mathrm{V}$	¢I1 (2)	99.075 °
	11 (1)	0.0172 A	fU1 (1)	-0.000mHz
	P1 (1)	0.069 W	f I 1 (1)	0.000mHz

1

機能説明

● 8個,16個表示のときの表示項目の変更

表示項目を選択して、その位置に表示する数値データを変更できます。

U1(1)	0.0094 V		U1(1)	0.0094 V
I 1(1)	0.0002 A	3番目の項目の	I 1(1)	0.0002 A
P 1(1)	-0.000 W	測定ノアンクンヨンの変更	►ø1(1)	130.853 °
S1(1)	$0.000 \mathrm{VA}$		S1(1)	$0.000 \mathrm{VA}$
			U1(1)	0.0094 V
			I 1(1)	0.0002 A
		3番日の頃日の エレメントの変更	P 2(1)	-0.001kW
			S1(1)	$0.000 \mathrm{VA}$
			「な物の	亦面
			V Status	2.C
			U1(1)	$0.0094 \mathrm{V}$
			I 1(1)	0.0002 A
			P 2(36)	0.000kW
			S1(1)	$0.000 \mathrm{VA}$

● リスト表示

測定ファンクションごとに、基本波~すべての次数の高調波の数値データを2列に表示 にできます。波形と同時に表示するときは、約半数のデータが表示されます。

・シングルリスト

1種類の測定ファンクションのデータを、高調波次数の奇数列、偶数列に分けて表示 します。測定ファンクションは、U、I、P、S、Q、 λ 、 ϕ , ϕ U, ϕ I, Z, Rs, Xs, Rp, Xp, Torque^{*}から選択できます。

* ファームウエアバージョン2.01以降の製品(PZ4000)で、モータモジュールがエレメント番 号4のスロットに装着されているときに適用できます。

・デュアルリスト

2種類の測定ファンクションのデータを、それぞれ1列に表示します。測定ファンクションは、U, I, P, S, Q, λ , ϕ , ϕ U, ϕ I, Z, Rs, Xs, Rp, Xp, Torque^{*} から選択できます。

* ファームウエアバージョン2.01以降の製品(PZ4000)で、モータモジュールがエレメント番 号4のスロットに装着されているときに適用できます。

・Σリスト

各エレメントおよび結線方式A, Bの測定ファンクションU, I, P, S, Q, λ, φな どのデータを, 選択した次数ごとに表示します。

逥			エレメ	ントと	結線方式	式		
☆定ファンクション	UIP SQλ¢	EV EA EW EVA Evar E E°	Element1] 4.0523] 0.00074] -0.001] 0.003] -0.003] -0.33571]-109.616	E1ement2 4.0364 0.005m 0.00002 0.00002 0.00000 0.99896 2.620	Element3 4.0490 0.004m 0.00002 0.00002 0.00000 0.99904 2.509	Element4 4.0520 0.0042 -0.00002k 0.00002k -0.00001k -0.90485 -154.803	Σ A 4.0523 0.00074 -0.001 0.003 -0.003 -0.33571	∑ B 4.0364 0.005m 0.00002 0.00002 0.00000 0.99896

● リスト表示のページスクロール

1画面ではすべての次数のデータを表示しきれません。これを補うため、シングルリストとデュアルリストのときに、ページスクロールをして、次の(または前の)次数のデータを表示できます。

数値表示のリセット 《操作説明は8.2,8.4節》

通常測定モードまたは高調波測定モードの数値表示のとき,測定ファンクションの表示順 を,あらかじめ用意されている順番にリセットできます。通常測定モード,高調波測定 モードともに1セットずつ用意されています。

1.6 波形表示

垂直(振幅)軸と水平(時間)軸

● 垂直(振幅)軸

設定された測定レンジが垂直軸方向の表示範囲になります。たとえば、電圧の測定レンジを「300Vpk」にすると、入力ゼロラインを中心に上300Vpk、下-300Vpkが表示範囲になります。

Note _

垂直軸の表示分解能

信号の最大振幅の直近上位の測定レンジを設定したほうが、より正確に波形を表示できます。 本機器では、12ビットのA/D変換器を使用し、4096レベルの分解能で信号をサンプリングし ます。また、1グリッドあたり512レベルで波形を表示します。一方、波形からデータを測定 するカーソル測定(後述参照)の場合は、最高16ビットの分解能に変換して、データを測定して います。

● 水平(時間)軸

本機器は、観測時間内の電圧または電流のサンプリングデータを波形表示します。水平 軸方向が観測時間に相当する時間軸で、左から右へサンプリングデータが新しくなりま す。画面に表示されるグリッドは、観測時間を10等分しています。たとえば、観測時 間を100msに設定すると、1グリッド(1div)当たり10msになります。

Note .

● 画面上の表示点数について

サンプリングデータを波形として画面に表示するときは、ラスタという表示区分にデータ点を 表示しています。ラスタは、1画面で時間軸方向に501本あります。

ー方,サンプルレートに従って,サンプリングデータがアクイジションメモリに取り込まれ, そのうちの表示レコード長分が,波形として画面に表示されます。この表示レコード長は,設 定レコード長と観測時間によって変わります。観測時間/サンプルレート/レコード長の関係 は,「付録1 観測時間/サンプルレート/レコード長の関係」をご覧ください。

このように画面の表示区分の数(表示点数)が一定であるのに対して、表示レコード長が変化するため、画面の表示点数と表示レコード長が一致しないときがあり、次のような処理をしています。

- 表示レコード長が表示点数に対して過剰なとき
 時間軸方向の一定区間ごとにP-P圧縮して表示します。P-P圧縮とは、一定区間ごとに最大値/最小値の2点を求めることです。1ラスタにこの2点を表示します。
- 表示レコード長が表示点数に対して不足しているとき
 表示補間をします。詳細は「波形の表示補間」をご覧ください。

● サンプリングデータの取り込み

観測時間を変えるとサンプルレートが変わります。最高5MS/sでデータをサンプリングできます。入力信号を順次サンプリングし、アクイジションメモリにデータを取り込みます。

● エリアシング

サンプルレートが入力信号の周波数に対して比較的低いと、信号に含まれている高周波成分が 失われます。このとき、ナイキストのサンプリング定理により、高周波のサンプリングデータ が低い周波数のデータに化けてしまう現象が発生します。この現象をエリアシング(aliasing)と いいます。

波形表示のON/OFF 《操作説明は9.1節》

入力モジュールが挿入されているエレメントに対応した各チャネルの波形を表示する (ON)/しない(OFF)の選択ができます。また、後述(「1.8 波形解析」参照)の演算した波 形を表示する(ON)/しない(OFF)の選択もできます。必要な波形だけを表示できるので、波 形が見易くなります。

波形の垂直ポジション 《操作説明は9.2節》

垂直軸方向のズームで,見たい部分が画面枠の外に出てしまったというようなときに,垂 直軸方向の波形の表示位置(垂直ポジション)を見易い位置に移動できます。

波形の画面分割表示 《操作説明は9.3節》

画面を等分割して,各チャネルの波形を分割した画面に割り付けることができます。最高 4つまで分割できます。波形が混雑していて見にくいときに便利です。割り付け方法を次 の中から選択できます。

- · Auto
 - 分割した画面に、表示ONになっているチャネルを番号順に割り付けます。
- Fixed

表示ON/OFFに関わらず、分割した画面にチャネル番号順に割り付けます。

User^{*}

表示ON/OFFに関わらず、分割した画面に任意のチャネルを割り付けられます。

* ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

波形の表示補間 《操作説明は9.4節》

時間軸方向のサンプリングデータが500点未満では、表示点間(ラスタ間)がつながりません。このとき、表示点間を補間し波形を表示する機能です。

● 直線補間

2点間を直線的に補間します。

● 補間「OFF」

補間をしません。データ点だけを表示します。

波形のズーム

《操作説明は9.8節》

● 垂直軸方向のズーム

表示されている各チャネルの波形ごとに、0.1~100倍のズーム率で、拡大/縮小ができます。入力ゼロラインを中心に、ズームされます。

● 時間軸方向のズーム

選択されている全波形を、2種類のズーム率で、時間軸方向に拡大できます。波形の観 測時間を長くしておいて、波形の一部を細かく見たいときに便利です。

・ズーム率

表示レコード長が画面の表示点数に対して過剰なときは、時間軸方向の一定区間ご とにP-P圧縮して、波形が表示されています。ズーム機能を使うと、P-P圧縮の圧縮 率を下げてアクイジションメモリに取り込まれたサンプリングデータの1点1点を見 ることができます。選択できる最大倍率は表示レコード長と観測時間に依存しま す。たとえば観測時間20sで表示レコード長100kワードのとき10,000倍、観測時間 20sで表示レコード長1Mワードまたは4Mワードのとき100,000倍です。

表示レコード長が表示点数に対して不足している,または,波形を拡大し過ぎてい るなどで画面上の表示点数が500点未満のときは,前述の表示補間の機能で,時間 軸方向に表示点を補間できます。

・ズーム表示の種類

ズームをしない通常波形(Main波形)とズーム波形(Z1波形とZ2波形の2つ)を,次のように組み合わせて表示できます。

・ズーム位置とズームボックス

ズーム位置は、時間を単位として設定できます。Main波形と、Z1またはZ2波形を 同時に表示しているときは、Main波形の表示枠内にズーム位置を示すズームボック スが表示され、ズーム位置が確認できます。ズームの中心はズームボックスの中心 で、ズームボックスの中心から左右に波形がズームされます。

[・]ズーム波形の画面分割表示

前述の「波形の画面分割表示」と同じように、画面を等分割して、各チャネルの波 形を分割した画面に自動的に割り付けることができます。 高調波測定モードのときに、結線方式Aで組み合わされた各エレメントの基本波U(1), I(1) の位相差と大きさ(実効値)の関係をベクトル表示できます。垂直軸の上の方向を0(角度ゼ ロ)とし、各入力信号のベクトルを表示します。また、ベクトルの大きさをズーム^{*}した り、各信号の大きさや信号間の位相差の値をいっしょに表示することもできます。 * ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

高調波データのバーグラフ表示 《操作説明は9.10節》

水平軸を高調波の次数, 垂直軸を各高調波の大きさとして, パーグラフで各高調波の大き さを表示できます。表示する高調波測定ファンクション, エレメント, 次数の設定ができ ます。高調波測定ファンクションは, U, I, P, S, Q, λ, φU, φI, Z, Rs, Xs, Rp, Xp, Torque*から選択できます。画面を上下半分に分割して, 数値表示と同時に表 示することもできます。

* ファームウエアバージョン2.01以降の製品(PZ4000)で、モータモジュールがエレメント番号 4のスロットに装着されているときに適用できます。

X-Y波形表示 《操作説明は9.11節》

水平軸(X軸)に指定したチャネルの入力信号の振幅レベルをとり、垂直軸(Y軸)にその他の 入力信号(表示がONになっている信号)の振幅レベルをとって、信号間の振幅レベルの関係 をみることができます。X-Y波形と通常のT-Y波形(時間軸と振幅レベルによる表示波形)の 同時観測も可能です。

その他の波形表示の設定 《操作説明は9.5~9.7節》

● グラティクル

画面にグリッドや十字目盛りを表示できます。「表示なし」の選択もできます。

● スケール値の表示

各チャネルの垂直軸の上限値と下限値,および水平軸(時間軸)の画面左右端の値を,表示する(ON)/表示しない(OFF)の選択ができます。

● 波形のラベル名の設定

各チャネルの波形のラベル名を8文字以内で設定できます。表示する(ON)/表示しない (OFF)の選択もできます。

1.7 数值演算

前述(1.2節)の測定ファンクションのデータや測定/演算機能を利用して, さらにいくつかの数値演算ができます。また, 測定ファンクションのデータを求めるときの演算式を選択する機能もあります。

デルタ演算 《操作説明は10.2節》

通常測定モードのときに、エレメント1,2,3間の電圧や電流の瞬時値(サンプリングデータ)の和や差を求め、それを元に、測定ファンクションΔUrms、ΔIrms、ΔUmn、Δ Imn、ΔUdc、ΔIdc、ΔUac、ΔIacを求めることができます。これをデルタ演算といいま す。デルタ演算によって、たとえば、三相交流回路のスター-デルタ変換ができます。演算 式は、「付録3」をご覧ください。測定/演算区間は、「1.2 測定モードと測定/演算区 間」と同じです。

ユーザー定義ファンクション 《操作説明は10.3節》

測定ファンクション記号と演算子を組み合わせて演算式を作り(定義して),その演算式の 数値データを求めることができます。測定ファンクションとエレメント番号を合わせたも の(たとえばUrms1のように)が,1つの演算項になります。通常測定モード,高調波測定 モードともに4つ(F1~F4)ずつ演算式を定義できます。

● 演算子

+, -, *****, /, ABS(絶対値), SQR(2乗), SQRT(平方根), LOG(自然対数), LOG10 (常用対数), EXP(指数), NEG(マイナス符号付加)の11種類です。

● 演算項

1つの式内の演算項は、16項まで設定できます。

皮相電力の演算式 《操作説明は10.4節》

皮相電力は電圧と電流の積で求められます。「1.2 測定モードと測定/演算区間」の「● 電圧と電流の求め方」で説明している真の実効値,平均値整流実効値校正,単純平均の3 種類の中から,皮相電力を求めるときの電圧と電流を選択できます。

1

アベレージング 《操作説明は10.5節》

設定した減衰定数で,数値データを指数化平均できます。電源や負荷の変動が大きいとき や入力信号の周波数が低いときで,数値表示がふらついて読みとりにくい場合に有効で す。次の式に従ってアベレージングされます。

$$D_n = D_{n-1} + \frac{(M_n - D_{n-1})}{K}$$

 $D_n: n回目の指数化平均した表示値(1回目の表示値D₁は、<math>M_1$ になります。) $D_{n-1}: n-1$ 回目の指数化平均した表示値 $M_n: n回目の測定データ$

K:減衰定数(2, 4, 8, 16, 32, 64から選択)

位相差 《操作説明は10.6節》

電圧と電流の位相差を表示する方式を選択できます。基準軸を0(ゼロ)にして,時計方向 360°の角度で位相差を表示する方式と、基準軸を0(ゼロ)にして、反時計方向を進み(D) 180°,時計方向を遅れ(G)180°の角度で位相差を表示する方式のどちらかを選択できま す。

ひずみ率の演算式 《操作説明は10.8節》

高調波測定モードの測定ファンクションUhdf, Ihdf, Phdf, Uthd, Ithd, Pthdには, 2 種類の演算式があり, 選択できます。演算式は, 「付録2」をご覧ください。

Corrected Power 《操作説明は10.4節》

適用規格によっては、変圧器に接続されている負荷が非常に小さいとき、測定された変圧 器の有効電力を補正することが定められています。その補正の演算式の選択と係数の設定 ができます。

IEC76-1(1976), IEEE C57.12.90-1993

IEC76-1(1993)

$$Pc = \frac{P}{P_1 + P_2 \left(\frac{Urms}{Umn}\right)^2}$$

$$Pc=P\left(1+\frac{Umn-Urms}{Umn}\right)$$

Pc:Corrected Power P:有効電力 Urms:真の実効値の電圧 Umn:平均値整流実効値校正の電圧 P₁, P₂:適用規格に定められている係数

数値演算の再実行 《操作説明は10.1節》

サンプリングデータの取り込みを停止している状態で、測定/演算区間や数値演算の設定 を変更して、演算の再実行ができます。測定ファンクションのデータを含めて、すべての 演算が再実行されます。

1.8 波形解析

表示されている波形の加算/減算をしたり、FFT演算をしてパワースペクトラムを表示できます。また、波形にカーソルを当ててその点の各種データも解析できます。

波形演算 《操作説明は11.2節》

各チャネルの記号と演算子を組み合わせて演算式を作り、その演算式の波形を表示できま す。各チャネルCH1~CH8をC1~C8という演算項にして、2種類の演算式を作ることが できます。1つの式内の演算項は、16項まで設定できます。演算の開始点(Start Point)と 終了点(End Point)が設定でき、その範囲で演算します。 演算子は、+、-、*、/、ABS(絶対値)、SQR(2乗)、SQRT(平方根)、LOG(自然対

数), LOG10(常用対数), EXP(指数), NEG(マイナス符号付加), DIF(微分-ファームウエ アパージョン2.01以降の製品(PZ4000)で適用)です。特殊関数として, TINTG, TREND, AVG, SSP, SLIP, PMがあります。TINTGは演算項2つ分としてカウントさ れます。

● TINTG

次の式にしたがって、サンプリングデータが積分されます。 $x_n = x_{n-1} + d_n \times t$ $x_n : n個目の表示データ(1個目の表示データx_1は、d_1 \times tになります。)$ $x_{n-1} : n - 1個目の積分された表示データ$ $d_n : n個目のサンプリングデータ$ t : サンプリング周期(サンプルレートの逆数)。タイムベースが外部クロックまたは高調波測定モードの場合は、t = 1秒になります。

TREND

同期対象信号の1周期ごとに、演算対象信号の瞬時値(サンプリングデータ)を演算(それ ぞれの測定ファンクションと同じ求め方)して、下表に示す測定ファンクションの TREND波形を表示できます。

演算対象にできる測定ファンクション	対応する関数	()内に入るチャネル記号
真の実効値と有効電力(Urms, Irms, P)	TREND()	C1, C2, C3, C4, C5, C6, C7, C8, C1*C2, C3*C4,
		C5*C6, C7*C8
平均値整流実効値校止(Umn, Imn)	IRENDM()	C1, C2, C3, C4, C5, C6, C7, C8
単純平均(Udc, Idc)	TRENDD()	C1, C2, C3, C4, C5, C6, C7, C8
周波数(fU, fl)	TRENDF()	C1, C2, C3, C4, C5, C6, C7, C8

* 関数TRENDM, TRENDD, TRENDFは, ファームウエアバージョン2.01以降の製品 (PZ4000)に適用できます。

各関数の()内に入るチャネル記号によって、同期対象信号は下表のようになります。

チャネル記号	同期対象信号
C1, C2, C1 * C2	測定/演算区間のゼロクロス設定のELEMENT1で選択されている信号
C3, C4, C3 * C4	測定/演算区間のゼロクロス設定のELEMENT2で選択されている信号
C5, C6, C5 * C6	測定/演算区間のゼロクロス設定のELEMENT3で選択されている信号
C7, C8, C7 * C8	測定/演算区間のゼロクロス設定のELEMENT4で選択されている信号
* Tレメント番号	1のスロットにモータモジュールが装着されている場合 C7 C8 C7★C8の

エレメント番号4のスロットにモータモジュールが装着されている場合, C7, C8, C7*C8の 設定はできません。

エレメント1のUmnのTREND波形を表示するときの演算式と波形例

AVG

電圧/電流の実効値や有効電力の瞬時値(サンプリングデータ)を,設定した減衰定数で 指数化平均して波形表示できます。次の式に従ってアベレージングされます。 AVG関数の書き方例

AVGk(C1*C2):エレメント1の有効電力のAVG波形が表示されます。 . (dn-xn-1)

$$x_n = x_{n-1} + \frac{k_n}{k}$$

演算式:TRENDM(C1)

xn:n個目の表示データ(1個目の表示データx1は、d1になります。)
 xn-1:n-1個目の指数化平均した表示データ
 dn:n個目のサンプリングデータ
 k:減衰定数(2, 4, 8, 16, 32, 64から選択)

モータモジュールの測定ファンクションのうちSync(同期速度)の波形(時間変化)を表示 します。TREND波形のように同期対象信号(周波数測定ソース-15.6節参照)の1周期ご とに,階段状の波形になります。

SLIP

モータモジュールの測定ファンクションのうちSlip(すべり)の波形(時間変化)を表示します。

• PM

モータモジュールの測定ファンクションのうちPm(モータ出力-メカニカルパワー)の波 形(時間変化)を表示します。

演算した波形の表示スケーリング 《操作説明は11.2節》

演算した波形を表示するときは、通常、演算結果の最大/最小値から、画面表示上の上下 限値を自動的に決めて表示するオートスケーリングができます。必要に応じて、上下限値 を任意に設定するマニュアルスケーリングもできます。

FFT演算 《操作説明は11.3節》

FFT(高速フーリエ変換)により、電圧、電流、有効電力のパワースペクトラムを表示できます。電圧、電流、有効電力の周波数分布を確認するときに便利です。

窓(Time window)は、矩形(レクタンギュラ)窓/ハニング窓の選択ができます。

矩形窓は,衝撃波のように窓内で完全に減衰する過渡的な信号に対して有効です。ハニン グ窓は,窓の両端付近をなだらかに減衰させ,両端をゼロレベルにして信号に連続性を持 たせる窓で,連続的な信号に対して有効です。

指定された1000点,2000点,10000点のサンプリングデータに対してFFT演算をし、それぞれ500点,1000点,5000点のデータ点数にして表示します。

Note _

● FFT関数

パワースペクトラムは、次の式で表されます。

FFT演算後の電圧の複素関数をU=Ur+jUj,電流の複素関数をI=Ir+jIjとします。

電圧のパワースペクトラム=
$$\sqrt{\frac{Ur^2+Uj^2}{2}}$$

電流のパワースペクトラム= $\sqrt{\frac{Ir^2+Ij^2}{2}}$

有効電力のパワースペクトラム=Urlr+Ujlj

Ur, Ir: Real Part Uj, Ij: Imaginaly Part

● 本機器の高調波測定とFFT演算の違い

高調波測定は、PLLソースに同期したサンプルレートで対象信号をサンプリングし、基本波の 整数倍の成分の信号を測定します。したがって、基本波の整数倍の高調波だけを含む信号の測 定に適し、高調波の次数ごとのインピーダンスや全高調波の総和を求めることができます。 FFT演算は、観測時間とメモリサイズによって決まる固定のサンプルレートで対象信号をサン プリングし、サンプルレートの1/2の帯域までの信号を高速フーリエ変換します。したがっ て、基本波の整数倍の成分以外の成分(ひずみ波やノイズ)も含む信号の解析に適し、パワース ペクトラムを、500点、1000点、5000点の周波数分解能で表示できます。

波形演算の再実行 《操作説明は11.1節》

サンプリングデータの取り込みを停止している状態で、演算開始点や終了点および波形演 算の設定を変更して、波形演算とFFT演算の再実行ができます。

カーソル測定 《操作説明は11.4節》

表示されている波形に、マーカーやカーソルを当てて、その点の値を測定し表示できま す。波形各部の電圧/電流や水平軸(X軸)上のデータなどを測定できます。カーソル測定は 画面に表示されているデータに対して測定します。

● マーカー

指定した波形上に「+」と「×」が表示されます。これがマーカーです。各マーカーの 垂直方向の値,画面左端からのX軸値,およびマーカー間の垂直方向の値の差やX軸値 の差などを測定できます。

● Hカーソル(水平カーソル)

水平に2本の破線が表示されます。これがHカーソルです。各Hカーソルの垂直方向の値と、Hカーソル間の垂直方向の値の差を測定できます。

● Vカーソル(垂直カーソル)

垂直に2本の破線が表示されます。これがVカーソルです。画面左端から各VカーソルまでのX軸値と、Vカーソル間のX軸値の差を測定できます。

1.9 データの保存/読み込みと、その他の便利な機能

フロッピーディスクへの保存/読み込み 《操作説明は12章》

フロッピーディスク(FD)ドライブを標準装備しています。数値データ,波形データ,およ び設定情報を保存し,必要に応じて保存したデータを読み込むことができます。また,画 面イメージデータをTIFF,BMP,およびPS(ポストスクリプト)形式で保存できます。文 書作成ソフトで,文章中に画面イメージデータを割り付けて,書類を作成できます。

SCSIデバイスへの保存/読み込み 《操作説明は12章》

オプションのSCSIインタフェース付き(仕様コード/C7)の製品は、上記のフロッピーディ スクへの保存/読み込みと同じように、外部のSCSIデバイス^{*}へのデータの保存/読み込み ができます。容量の大きいデータを取り扱うときに便利です。

* MOディスク/PDディスク/ZIPディスク/ハードディスクドライブなど。

イニシャライズ(初期化) 《操作説明は4.2節》

操作キーやソフトキーなどによる各設定を,工場出荷時の状態(初期設定)に戻すことがで きます。初期設定の詳細は,「付録4 初期設定/数値データの表示順一覧表」をご覧くだ さい。

画面イメージデータの出力 《操作説明は13章》

内蔵プリンタ,セントロニクス対応の外部プリンタ,およびフロッピーディスクやSCSIデ バイスなどの記憶媒体に画面イメージデータを出力できます。

メッセージ言語の選択 《操作説明は14.2節》

使用中に画面に表示されるエラーメッセージやヘルプ文の言語を選択できます。日本語, 英語の中から選択できます。

画面輝度の設定 《操作説明は14.2節》

液晶画面の明るさを調整できます。

表示色の設定 《操作説明は14.3節》

波形,背景,目盛り,カーソルなどのグラフィック関連や,メニュー,メニューの背景な どのテキスト関連の表示色を設定できます。赤(R),緑(G),青(B)の割合で設定します。

アクションオントリガ 《操作説明は14.4節》

トリガがかかるたびに、指定した動作をします。

- ・ 数値データ, 波形データおよび設定情報の指定メディアへの保存
- ・ 画面イメージデータの指定先への出力または保存

自己診断機能 《操作説明は15.3節》

本機器内部のメモリ(ROMやRAM),操作キー,フロッピーディスクドライブ,内蔵プリンタ(オプション)などが,正常かどうかを自己診断できます。

本機器のシステム状態の確認 《操作説明は15.4節》

モデル, ROMバージョン(ファームウエアのバージョン),入力モジュールの構成,オプションの有無など,本機器のシステム状態が確認できます。

通信機能(GP-IB/シリアル) 《通信インタフェースユーザーズマニュアルIM253710-11を参照》

GP-IBインタフェースとシリアルインタフェース(EIA-574規格準拠(EIA-232(RS-232)の 9ピン用)を標準装備しています。データをパーソナルコンピュータに出力して解析した り、外部コントローラで本機器を制御して、データを測定できます。

IM 253710-01

2.1 フロントパネル,リアパネル,上面

フロントパネル

リアパネル

- *1 エレメント番号4のスロットには、センサ入力モジュールを装着できます。入力端子またはコネクタの形状は、装着されているセンサ入力モジュールによって異なります。それぞれの形状については、2.4節をご覧ください。
- *2 保護接地端子は、2004年1月以降出荷の製品のリアパネルに装備されています。安全にご使用いただくた め、測定する電流が7A(実効値)を超える場合は、測定する電流以上の電流を流すことが可能なケーブルま たは導体を使って、本機器を操作する前に必ず保護接地してください。保護接地端子の有無の詳細につい ては、お買い求め先にお問い合わせください。

2.2 操作キー,ジョグシャトル,ロータリノブ

各機能に共通

測定モード、測定データの取り込み条件、およびトリガの設定

5.4, 9.1, 9.7, 9.8節

数値表示、波形表示の設定

数値演算,波形解析の設定

2

各部の名称と使い方

データの保存/読み込み,その他の機能の設定

2.3 画面表示

通常測定モードの数値表示

● 8個表示

O VA
) var
1
7°
Hz
kHz
6 V
0 51 7 1 1 1 1 1 5

● 42個表示

	Urns1	5.2241 V	fI1	1.000kHz	Pc1 -0.083 W
	Umn1	4.6657 V	ll+nk1	9.8576 V	η1
2011	Udc1	1.0399 V	_; ^{;1}	-7.7754 V	1/11
測	Uac1	5.1195 V	ر 1 ط	7.16912 A	F1
5	Irns1	4.97312 A	- 2 1	-7.27178 A	F2
ア	Imn1	4.97277 A	- L	1.887	F3
>↓	Idc1	-0.03930 A	1	1.462	F4
2	Iac1	4.97297 A	FfU1	1.244	∆Urms1 0.0413 V
ゴ	P1	-0.094 W	Ff I 1	1.111	∆Umn1 0.0365 V
シ	S1	25.980 VA	21	1.05046 Ω	∆Udc1 0.0111 V
	Q1	25.980 yar	Rs1	-3.79359n	∆Uac1 0.0398 V
	λ1	-0.00361	Xs1	1.05046	d1rms1
	ø1	90.207 °	Rp1	-290.879	d]mn1
	fU1	50.02 Hz	Xp1	1.05047	4Idc1

● 78個表示

	Unmed E 2244 U	D=4 200 070	111-2	4 0450 11
	Urms1 5.2241 V	RD1 -290.879	UdCZ	1.0150 0
	Umm1 4.6657 V	Xp1 1.05047	Uac2	5.0407 V
	Udc1 1.0399 V	Pc1 −0.083 W	Irms2	0.000mA
	Uac1 5.1195 V		Imn2	0.000mA
	Irms1 4.97312 A		Idc2	0.049nA
泪山	Imn1 4.97277 A	ブ	Iac2	0.000mA
22	Idc1 -0.03930 A		P2	0.00005 W
正	Iac1 4.97297 A	I	S2	0.00000 VA
7	P1 –0.094 W	々	02	0.00000 var
-	S1 25.980 VF	s1 0.0413 V	λŻ	Error
ア	Q1 25.980 va	1 0.0365 V	¢2	Error
	λ1 -0.00361	1 0.0111 V	fUZ	50.00 Hz
~	ø1 90.207 °	🚽 :1 0.0398 V	f IZ	0.000nHz
~ *	fU1 50.02 Hz	s1	U+pk2	9.7975 V
1	fI1 1.000kHz	⊿Imn1	U-pk2	-7.7806 V
シ	U+pk1 9.8576 V	4Idc1	I+pk2	1.058mA
- -	U−pk1 -7.7754 V	∆Iac1	I-pkZ	-0.895nA
=	I+pk1 7.16912 A		CfÛ2	1.905
~	I-pk1 -7.27178 A		Cf IZ	Error
-	CfU1 1.887		FfU2	1.256
	Cf I1 1.462		Ff IZ	Error
	FfU1 1.244		Z2	Error
	Ff I1 1.111		Rsz	Error
	Z1 1.05046 Ω		XsZ	Error
	Rs1 -3.79359m	Urms2 5.1418 V	RpZ	482.521k
	Xs1 1.05046	Umm2 4.5488 V	XpZ	Error

● All表示

エレメントと結線方式

			-					
		Element1	Element2	Element3	Element4	ΣÂ	ΣΒ	
Cond. 1	Urms[V	1 5.2241	5.1418	5.1577	5.2681	5.2241	5.1418	
	Umn (V	1 4.6657	4.5488	4.5635	4.7438	4.6657	4.5488	
÷	Udc [V	1 1.0399	1.0150	1.0259	1.2703	1.0399	1.0150	
	Uac [V] 5.1195	5.0407	5.0546	5.1127	5.1195	5.0407	
フレ	Irms[A	1 4.97312	0.000m	0.000m	24.9324	4.97312	0.000m	
-	Imn (A	1 4.97277	0.000m	0.000m	24.9297	4.97277	0.000m	
<i>y</i>	Idc [A	1-0.03930	0.049m	0.044m	-0.2221	-0.03930	0.049m	
· · /	Iac [A	1 4.97297	0.000m	0.000m	24.9314	4.97297	0.000m	
- · ·	P [⊌	1 -0.094	0.00005	0.00005	0.00001k	-0.094	0.00005	
ク	S [VA	1 25.980	0.00000	0.00000	0.13135k	25.980	0.00000	
5.	Q [var	1 25.980	0.00000	0.00000	0.13135k	25.980	0.00000	
~ ~	λī	1-0.00361	Error	Error	0.00006	-0.00361	Error	ー
-	o [°	1 90.207	Error	Error	89.996	90.207	Error	1
	fU [Hz	1 50.02	50.00	50.00	50.04			
ン	fI [Hz	l 1.000k	0.000n	0.000m	1.000k			12
	U+pk[V	1 9.8576	9.7975	9.8654	9.9788			-
	U-pk[V	1 -7.7754	-7.7806	-7.7859	-7.6726			
	I+pk[A	1 7.16912	1.058m	0.881m	35.7969			
	I-pk[A	1-7.27178	-0.895m	-0.889m	-36.2547			
	CFÛ [1 1.887	1.905	1.913	1.894			
	CfII	1 1.462	Error	Error	1.454			
	FfU [1 1.244	1.256	1.255	1.233			
	Ff I I	1 1.111	Error	Error	1.111			
	Ζ [Ω	1 1.05046	Error	Error	211.298m	1.05046	Error	
	Rs [Ω	1-3.79359m	Error	Error	0.0000	-3.79359m	Error	
								v

高調波測定モードの数値表示

● 8個表示

	U1	1.1377 V	\$1 (1)	1.033 VA
測定ファンクション	11	1.96106 A	1	1.015 var
	P1	0.149 W		-0.18486
	S1	0.260 VA	タ 1 1)	100.653 °
	Q1	0.213 var	¥ J1 2)	-2.260 °
	U1 (1)	$0.8970 \mathrm{V}$	¢I1 (2)	-89.524 °
	11 (1)	1.15186 A	fU1 (1)	-0.000mHz
	P1 (1)	-0.191 W	f I1 (1)	0.000mHz

● シングルリスト

● デュアルリスト

调	エレン	ィントと	結線方	式		
☆定ファンクション	Element1 [U] 4.0523 [A] 0.00074 [W] -0.001 [UA] -0.003 [UA] -0.003 []-0.033571 [°]-109.616	Element2 4.0364 0.005n 0.00002 0.00002 0.00000 0.99896 2.620	Element3 4.0490 0.004m 0.00002 0.00002 0.00000 0.99904 2.509	Element4 4.0520 0.0042 -0.00002k 0.00002k 0.00002k -0.00001k -0.900485 -154.803	Σ A 4.0523 0.00074 -0.001 0.003 -0.003 -0.33571	Σ B 4.0364 0.005m 0.00002 0.00002 0.00000 0.99896

2

各部の名称と使い方

波形表示

● 通常波形表示

2

各部の名称と使い方

● カーソル測定時の表示

数値と波形の同時表示

数値とバーグラフの同時表示

U1	4.567	V	Q1	0.0	011	kvar
11	100.36	A	U1 (1)	4.1	20	V
P1	0.4584	kW	11 (1)	90	.53	Ĥ
S1	0.4584	kUA	P1 (1)	0.3	730	k₩
Bar U 1	100.0 0 (los Scale)	(0 - 1) 3 3	00) /1+ /1× Y1	4.1 0.3 3.8	20 V 117 V 103 V
Bar U 1 Bar I 1	10.00%9	tos Scale)		00)	Шġ	Шіш
8ar I 1	X 			(2+ (2× 1¥2 order+ order +	90. 6. 83. 1	53 A 97 A 57 A

2.4 入力モジュール

電力測定モジュール

Model 253752

3.1 使用上の注意

安全にご使用いただくための注意

- ●本機器を安全にご使用いただくために 初めてご使用になるときは、必ずvi~viiページに記載の「本機器を安全にご使用いただ くために」をお読みください。
- ケースを外さないでください 本体のケースを外さないでください。内部には高電圧部があり、たいへん危険です。内 部の点検および調整は、お買い求め先にお申しつけください。
- 異常の場合には 本体から煙が出ていたり変な臭いがするなど、異常な状態になったときは、直ちに電源 スイッチをOFFにするとともに、電源コードをコンセントから抜いてください。また、 入力端子に接続されている測定対象の回路の電源を切ってください。異常な状態になっ たときは、お買い求め先にご連絡ください。
- 電源コードについて 電源コードの上に物を載せたり、電源コードが発熱物に触れないようにご注意ください。また、電源コードの差し込みプラグをコンセントから抜くときは、コードを引っ張らずに必ずプラグを持って引き抜いてください。電源コードが損傷した場合は、iiページに記載の部品番号をご確認のうえ、お買い求め先にご注文ください。

取り扱い上の一般的注意

- ●上に物を置かないでください
 本機器を重ね置きしたり、本機器の上に他の機器や水の入った容器などを置かないでく
 ださい。故障の原因になります。
 ●帯電したものを近づけないでください。
 - 帯電したものを入力端子に近づけないでください。内部回路が破壊される可能性があり ます。
- 液晶画面を傷つけないでください 画面の液晶ディスプレイは非常に傷つきやすいので、先のとがったもので表面を傷つけ ないように注意してください。また、振動や衝撃を与えないでください。
- ●長時間使用しないときには 測定回路や本機器の電源を切り、本機器の電源コードをコンセントから抜いておいてく ださい。
- 持ち運ぶときは

まず、測定回路の電源を切って測定用ケーブルを外してください。それから、本機器の 電源スイッチをOFFにして電源コードやその他のケーブルを外してください。持ち運ぶ ときは、下図のように両手で取っ手を持ってください。

● 汚れを取るときには

ケースや操作パネルの汚れを取るときは、測定回路や本機器の電源を切り、本機器の電 源コードをコンセントから抜いてから、柔らかく乾いたきれいな布で軽く拭き取ってく ださい。ペンジンやシンナーなどの薬品を使用しないでください。変色や変形の原因に なります。

3.2 本機器を設置する

設置条件

次の条件に合う場所に設置してください。

● 平坦で水平な場所

安定した場所に,左右前後とも水平を保って設置してください。不安定な場所や傾いた 状態で使用すると,プリンタの記録品質を悪くしたり,精度のよい測定ができなくなる 可能性があります。

● 風通しのよい場所

本機器の上面および底面には通気孔があります。また、上面には冷却ファンの排気口が あります。内部の温度上昇を抑えるため、通気孔や排気口と設置面との距離は、20mm 以上空けてください。

測定線や各種ケーブルを接続するとき、および内蔵プリンタカバーを開閉するときは、 上記のスペースの他に、作業に必要なスペースを空けてください。

● 周囲温度および周囲湿度

- 周囲温度:5~40℃
- 周囲湿度:20~80%RH(プリンタ未使用時) 35~80%RH(プリンタ使用時) ただし,どちらの場合も結露のないこと。

● 次のような場所には設置しないでください。

- ・直射日光の当たる場所や熱発生源の近く
- ・油煙、湯気、ほこり、腐食性ガスなどの多い場所
- ・強電磁界発生源の近く
- 高電圧機器や動力線の近く
- ・機械的振動の多い場所
- ・不安定な場所

Note _

- ・ 精度のよい測定をするときは次の環境でご使用ください。
 - 周囲温度:23±3℃ 周囲湿度:50±10%RH(ただし,結露のないこと)
 - 5~20℃または26~40℃の周囲温度で使用するときは、各モジュールの確度に対して「第17 章」に示すモジュールの温度係数を加算してください。
- ・ 周囲の湿度が30%以下の場所に設置する場合は、静電気防止マットなどを使用して、静電気の 発生を防いでください。
- ・ 温度、湿度の低い場所から高い場所に移動したり、急激な温度変化があると結露することがあります。このようなときは、周囲の温度に1時間以上慣らして、結露のない状態でご使用ください。

保管場所

本機器を保管するときは、次のような場所を避けてください。

・相対湿度が80%以上の高湿度な場所	・振動が激しい場所
・直射日光があたる場所	・ 腐食性ガス,可燃性ガスがある場所
・60℃以上の高温度な場所	・ちり、ごみ、塩分、鉄粉が多い場所
・高湿度熱源のそば	·水,油,薬品などの飛沫がある場所
できるだけ,5~40℃,20~80%RHの環境で保健	管されることをおすすめします。

IM 253710-01

設置姿勢

● ディスクトップ

下図のように平坦で水平な場所に設置してください。水平に設置したときに、底面脚に すべり止め用のゴムを付けることができます。2セット(4つ)の底面脚用ゴムが付属品と して付いています。

● ラックマウント

ラックにマウントするときは、別売のラックマウント用キットをご使用ください。

品名	形名	備考
	751535-E4 751535-J4	EIA用 JIS用

以下に取り付け手順の概略を記載します。取り付け手順の詳細は、ラックマウント用 キットに添付されている取扱説明書をご覧ください。

- 1. 本体両側面にある取っ手を外します。
- 2. 本体底面にある4つの脚を外します。
- 本体両側面の手前にある4箇所のラックマウント取り付け穴のシールカバーと、
 2箇所の樹脂リベットをはがします。
- 4. 取っ手の取り付け穴と、底面脚の穴にシールを貼ります。
- 5. ラックマウント用キットを取り付けます。
- 6. 本体をラックに取り付けます。

Note

- · ラックに取り付けるときは、内部の温度上昇を抑えるため、通気孔や排気口と設置面との距離 は、20mm以上空けてください。
- · 必ず下からの支えを施してください。このとき、本機器の通気孔を塞がないようにしてください。

3.3 入力モジュールを装着する

警告

- 感電や機器の損傷を防ぐため、入力モジュールを着脱する場合は、測定回路の電源を切ってから、本機器の電源スイッチをOFFにして、すべての入力モジュールの測定用ケーブルを外してください。
- ●感電防止と、温度上昇による測定確度の低下や電磁波の本機器内外への影響を防 ぐため、入力モジュールを装着していないスロットには、付属のカバープレート を取り付けてください。
- ●本機器を使用中に入力モジュールがスロットから抜けた場合、感電したり、本機器および入力モジュールを損傷する恐れがあります。入力モジュールに付いている上下4ヶ所のねじを締めて、モジュールを確実に固定してください。
- スロット内にモジュールガイドの突起があります。スロット内には、手を入れないでください。スロット内に手を入れると、この突起で手を傷つける恐れがあります。

入力モジュールの種類

次の種類があります。

MODEL	名称	備考
253751 253752	電力測定モジュール 電力測定モジュール	電圧1000V/電流5A/電流センサ500mV 電圧1000V/電流5A&20A/ 電流センサ500mV
253771	センサ入力モジュール	モータモジュール,2チャネル入力。 回転センサやトルクメータからの信号を入 力。

入力モジュール着脱時の注意

- ・電力測定モジュールは、エレメント番号1のスロットから順番に装着してください。エレメント番号1のスロットに電力測定モジュールを装着しないでエレメント番号2のスロットに電力測定モジュールを装着する、エレメント番号2のスロットに電力測定モジュールを装着するというように、エレメント番号1と3のスロットに電力測定モジュールを装着するというように、エレメント番号が小さいスロットに電力測定モジュールを装着しないでおくと、選択された結線方式(「5.2 結線方式を選択する」を参照)によっては、正しい測定ができません。
- ・センサ入力モジュールは、エレメント番号4のスロットに装着してご使用ください。他のスロットに装着すると正しく動作しません。センサ入力モジュールを装着すると、電力測定モジュールは3モジュールまでしか装着できません。
- ・装着している入力モジュールの差し替えをして、本機器の電源を入れると、差し替えをしたエレメントの設定は初期化されます。前の設定を残しておくには、設定情報を保存する必要があります。設定情報の保存については、「12.5 設定情報を保存する/読み込む」をご覧ください。

3

測定を開始する前に

- 4 入力モジュールを固定している上下4ヶ所のねじをゆるめます。
- 5. 入力モジュールの上下の取っ手を持って入力モジュールを引き抜きます。
- 入力モジュールを外したスロットにカバープレートを取り付けます。 6.

3.4 測定回路の結線時の注意

感電や機器を損傷を防ぐため、次の注意事項をお守りください。

警告

●安全にご使用いただくため、測定する電流が7A(実効値)を超える場合は、測定する電流以上の電流を流すことが可能なケーブルまたは導体を使って、本機器を操作する前に必ず保護接地してください。保護接地端子は、2004年1月以降出荷の製品のリアパネルに装備^{*}されています。

* 保護接地端子の有無の詳細については,お買い求め先にお問い合わせください。

- 測定用ケーブルを接続する前に本機器を保護接地してください。本機器に付属の 電源コードは、接地線のある3極電源コードです。電源コードを保護接地端子の ある3極電源コンセントに接続してください。3極-2極変換アダプタ(日本国内で のみ使用可)を使用する場合は、保護接地端子に変換アダプタの接地線を確実に接 続してください。
- ●測定回路を結線する場合は、測定回路の電源を切ってください。電源を切らずに、測定用ケーブルを結線したり外すことは危険です。
- 電圧入力端子に電流回路を結線しないよう,また電流入力端子に電圧回路を結線 しないよう十分注意してください。
- ●入力端子に結線した状態で、測定用ケーブルの導電部(露出部)が端子からはみだ さないように、測定用ケーブルの絶縁被覆を取り除いてください。そして、結線 したケーブルが入力端子から外れないように、入力端子のねじをしっかり締め付 けてください。
- ●電圧入力端子には、導電部が露出していない安全端子が付いた測定用ケーブルを 使用してください。導電部が露出している端子(例:バナナ端子)を使用している と、端子が抜けたとき危険です。
- ●電流センサ入力コネクタに接続するコネクタは、導電部が露出していない安全端 子構造のものを使用してください。導電部が露出しているコネクタを使用してい ると、端子が抜けたとき危険です。
- 複数の系統の電流入力端子を持つ入力モジュールがあります。1つの入力モジュールで使用できる電流入力は、1系統(1組の電流入力端子)だけです。他の電流入力端子や電流センサ入力端子の測定用ケーブルを外してください。
- ●電流入力端子に測定回路の電圧が印加されているときは、他の電流入力端子や電流センサ入力端子に触れないでください。内部で電気的につながっているため危険です。
- ●電流センサ入力コネクタに外部の電流センサからの測定用ケーブルを接続し使用 するときは、電流入力端子の測定用ケーブルを外してください。また、電流セン サ入力端子に測定回路の電圧が印加されているときは、電流入力端子に触れない でください。内部で電気的につながっているため危険です。
- 外部に変圧器(PT)/変流器(CT)を使用する場合は、測定電圧(U)に対して、十分に 耐電圧(2U+1000Vを目安)があるものを使用してください。また、通電状態で CTの二次側が開路にならないように注意してください。開路になるとCTの二次 側に高電圧が発生し危険です。
- ●外部の電流センサは、ケース入りで通電部とケースが絶縁されていて、測定回路の電圧に対して十分に耐電圧があるものをご使用ください。センサが裸のままの場合、誤って接触する可能性が高く危険です。
- 外部の電流センサにシャント形電流センサを使用する場合は、測定回路の電源を 切ってください。通電中は、シャント形電流センサに測定回路の電圧が印加され ていて危険です。

- 外部の電流センサにクランプ形電流センサを使用する場合は, 測定回路の電圧 と、クランプ形センサの仕様や取扱方法などを十分理解したうえで、感電などの 危険がないことを確認してください。
- ラックマウントでご使用の場合は、安全のため、ラックの前面側から本機器への 測定回路の電源を切ることができるスイッチを装備してください。
- ▶ 保護機能を有効にするため,次の項目を確認してから測定回路の電圧や電流を入 力してください。
 - ·本機器に付属された電源コードを使用して電源が接続され、保護接地されてい る。
 - · 本機器の電源スイッチがONになっている。
 - 本機器に付属された電流入力保護カバーが取り付けられている。
- ▶本機器の電源スイッチがONのときは,電圧入力端子または電流入力端子に次の値 を超える入力を加えないでください。OFFのときは測定回路の電源を切ってくだ さい。その他の入力端子については、17章の各モジュールの仕様をご覧くださ $()_{\circ}$

最大許容入力	電圧入力	電流入力
瞬時最大 (1秒間)	ピーク値が2000Vまたは 実効値が1000Vのどちらか 低い方	5A端子 : ピーク値が30Aまたは 実効値が15Aのどちらか 低い方
	(CAT II)	20A端子 : ピーク値が150Aまたは 実効値が40Aのどちらか 低い方
連続最大	上記の「瞬時最大」と同じ	5A端子 : ピーク値が10Aまたは 実効値が7Aのどちらか 低い方
		20A端子 : ピーク値が100Aまたは 実効値が30Aのどちらか 低い方

!\

注	意

- 測定用ケーブルは、測定する電圧や電流に対して、耐電圧および電流容量ともに 十分余裕があり、使用定格に適したものを使用してください。
 - 例:電流20Aで使用するときは、導体断面積「4mm²」以上の銅線を使用してく ださい。
- このとき、電流入力端子と圧着端子との接触部分に異物が挟まっていないことを 確認してください。
- 電流入力端子のつまみに緩みが発生していないか、電流入力端子と圧着端子との 接触部分に異常がないか、定期的に確認してください。

Note .

- ・結線をしたあと、結線方式を選択する必要があります。「5.2 結線方式を選択する」をご覧 ください。
- · 大電流や高い周波数成分を含んだ電圧/電流の測定をするときは、それらの相互干渉やノイズ 対策に十分注意して結線してください。
- ・測定回路と本機器の間の損失を軽減するため、測定用ケーブルはできるだけ短くしてください。
- ・3.7節~3.10節に示す結線図の太線は電流が流れる回路です。流れる電流に適した導線を使用 してください。
- 測定回路の電圧をより正しく測定するため、電圧入力端子に接続する測定用ケーブルは、でき るだけ測定回路に近いところに接続してください。
- より正しく測定するため、対地静電容量が小さくなるように、測定用ケーブルは接地線や本機 器ケースからできるだけ離して接続してください。

3.5 精度よく測定するために

電力損失の影響

負荷に合わせた結線をすることで、電力損失による測定確度への影響を小さくできます。 以下に、直流電源(SOURCE),抵抗負荷(LOAD)の場合を考えます。

● 測定電流が比較的大きい場合

電圧測定回路を電流測定回路より負荷側に接続します。電流測定回路は、測定回路の負荷に流れる電流にと電圧測定回路に流れる電流いの和を測定します。測定回路電流はになのでivだけ誤差になります。本機器の電圧測定回路の入力抵抗は、約1MQです。1000V入力のとき、ivは約1mA(1000V/1MQ)です。負荷電流にが10A以上(負荷抵抗は100Q以下)であれば、測定確度への影響は0.01%以下になります。また、100V、10A入力の場合では、iv=0.1mA(100V/1MQ)なので、測定確度への影響は0.001%(0.1mA/10A)になります。

参考までに、0.1%、0.01%、および0.001%の影響を与える電圧と電流の関係を下図に 示します。

● 測定電流が比較的小さい場合

電流測定回路が負荷側になるように接続します。この場合、電圧測定回路は負荷の電圧 e_と電流測定回路の電圧降下e_iの和を測定し、e_iだけ誤差になります。本機器の電流測 定回路の入力抵抗は、5A端子が約100mΩ、20A端子が約11mΩです。たとえば負荷抵 抗1kΩとすると、測定確度への影響は、5A端子が約0.01%(100mΩ/1kΩ)、20A端子 が約0.0011%(11mΩ/1kΩ)になります。

浮遊容量の影響

電源(SOURCE)の接地電位に近い側に、本機器の電流入力端子を接続したほうが、本機器 内の浮遊容量による測定確度への影響を低減できます。

本機器の内部構成は、次のようになっています。

電圧測定回路と電流測定回路は、そろ(れシールドケースで囲まれています。そして、そ れらが、さらに外ケースの中に入っています。また、電圧測定回路のシールドケースは、 電圧入力端子の土端子に、電流測定回路のシールドケースは、電流入力端子の土端子に、 それぞれ接続されています。

外ケースとシールドケース間は絶縁されているため、浮遊容量Csが存在します。Csは約 100pFです。この浮遊容量Csによって生じる電流が誤差になります。

例として、電源の片側と外ケースが接地されている場合を考えます。 この場合、負荷電流にと浮遊容量を通る電流icsの2つの電流が考えられます。iには、破線の ように電流測定回路を通ってから、負荷を通って電源に戻ります。icsは、1点鎖線のよう に電流測定回路を通ってから、浮遊容量、外ケースの接地を通って電源に戻ります。 電流測定回路では、iLだけを測定しようとしても、icsとの和(ベクトル和)を求めることに なり、icsだけ誤差になります。Csに加わる電圧をVcs(コモンモード電圧)とすると、ics は、次の式で求められます。icsは電圧に対して90°位相が進んでいるため、力率が小さい ほど、icsによる測定確度への影響は大きくなります。

 $i_{Cs} = V_{Cs} \times 2\pi f \times Cs$

本機器のように高い周波数まで測定する場合,この誤差icsを無視できません。 本機器の電流入力端子を電源の接地電位に近い側に接続すれば、本機器の電流測定回路の 土端子が接地電位に近くなるため、Vcsがほぼゼロに等しくなり、icsがほとんど流れない ので、測定確度への影響が低減されます。

3.6 電源を接続する

電源を接続する前に

感電や機器の損傷を防ぐため、次の注意事項をお守りください。

警告

- ●供給側の電圧が本機器の定格電源電圧に合っていることを確認してから、電源 コードを接続してください。
 - 本機器の電源スイッチがOFFになっていることを確認してから、電源コードを接続してください。
 - 感電や火災防止のため、電源コードおよび3極-2極変換アダプタ(日本国内でのみ 使用可)は、必ず当社が供給したものをご使用ください。
- 感電防止のため必ず保護接地をしてください。本機器の電源コードは、保護接地 端子のある3極電源コンセントに接続してください。やむを得ず、2極電源コンセントに接続するときは、付属の3極-2極変換アダプタ(日本国内でのみ使用可)を使 用して、電源コンセントの保護接地端子に変換アダプタの接地線を確実に接続してください。
- ●保護接地線のない延長用コードを使用しないでください。保護動作が無効になります。

電源コードを接続する

- 1. 本機器の電源スイッチがOFFであることを確認します。
- 2. 本機器のリアパネルの電源コネクタに、付属品の電源コードのプラグを接続しま す。
- 3. 次の条件を満たす電源コンセントに、電源コードのもう一方のプラグを接続します。電源コンセントは保護接地端子を備えた3極コンセントを使用してください。 やむを得ず2極コンセントを使用するときは、付属品の3極-2極変換アダプタ(日本国内でのみ使用可)を使用して、アダプタから出ている緑色の接地線を必ず電源 コンセントの保護接地端子に接続してください。

項目	仕様
定格電源電圧	100~120VAC, 200~240VAC
電源電圧変動許容範囲	90~132VAC, 180~264VAC
定格電源周波数	50/60Hz
電源周波数変動範囲	48~63Hz
最大消費電力(プリンタ使用時)	200VA

3.7 直接入力の測定回路を結線する

電力測定モジュールの電圧/電流入力端子に,直接,測定回路から測定用ケーブルを結線 します。感電や機器の損傷を防ぐため,「3.4 測定回路の結線時の注意」の注意事項を お守りください。

入力端子への接続

● 電圧入力端子

導電部が露出していない安全端子を、電圧入力端子に差し込んでください。

● 電流入力端子

電力モジュール253751には、5A端子があります。 電力モジュール253752には、5Aと20Aの2種類の端子がありますが、1つの入力モ ジュールで使用できる電流入力は1系統(1組の電流入力端子)だけです。感電や機器の損 傷を防ぐため、同時に複数の電流入力端子に測定用ケーブルを結線しないでください。

端子(バインディングポスト)の締め付けねじはM6です。ねじに導線を巻き付けるか, 圧着端子をねじ軸に通してから,端子のつまみを持ってしっかり締め付けてください。

電流入力端子と圧着端子との接続時、および、接続したあとの注意につきましては3.4 節をご覧ください。

結線方式の種類とエレメントの組み合わせ

電力測定モジュールの装着位置によって,選択できる結線方式の種類とエレメントの組み 合わせが,次のように異なります。

電力測定モジュール が装着されている	・選択できる結線方式の 組み合わせ	エレメントの組み合わせ
エレメント番号		
1だけ	単相2線式(1P2W)だけ	1
1と2	単相2線式(1P2W)一単相2線式(1P2W)	1-2
	単相3線式(1P3W)	(1と2)
	三相3線式(3P3W)	(1と2)
1と2と3	単相2線式(1P2W)一単相2線式(1P2W)	1—2—3
	(3つの全エレメントが単相2線式として扱われ	れます。)
	単相2線式(1P2W)一単相3線式(1P3W)	1-(2と3)
	単相2線式(1P2W)一三相3線式(3P3W)	1-(2)
	単相3線式(1P3W)一単相2線式(1P2W)	(122)-3
	三相3線式(3P3W)一単相2線式(1P2W)	(122)-3
	3電圧3電流計法(3V3A)	(12223)
	三相4線式(3P4W)	(12223)
1と2と3と4	単相2線式(1P2W)一単相2線式(1P2W)	1-2-3-4
	(4つの全エレメントが単相2線式として扱われ	れます。)
	単相2線式(1P2W)一単相3線式(1P3W)	1-(2と3)-4
	(エレメント1と4が単相2線式として扱われま	す。)
	单相2線式(1P2W)一三相3線式(3P3W)	1-(223)-4
	(エレメント1と4が単相2線式として扱われま	
	甲相2線式(1P2W)−3電圧3電流計法(3V3A)	1-(2E3E4)
	甲相2線式(1P2W)—三相4線式(3P4W)	1-(2E3E4)
	単相3線式(IP3W)一単相2線式(IP2W)	(122) - 3 - 4
	(エレメント3C4が単相2線式Cしし扱われま ※担2線式(102M) ※担2線式(102M)	(1+2) $(2+4)$
	単化3様式(IP3W)─単化3様式(IP3W) ※42約式(IP3W) - 42約式(IP3W)	$(1 \leq 2) = (3 \leq 4)$
	単伯S禄式(TFSW)─二伯S禄式(SFSW) 	$(1 \geq 2) = (3 \geq 4)$
	二伯3禄式(3F3W)一単伯2禄式(1F2W) (エレマント3と4が単相2娘子として恐われま)	(ICZ)—3—4 また)
	(エレハノトつに40)半伯2禄式にして扱われる 三相3絶式(3P3M)―単相3絶式(1P3M)	(1 + 2) - (3 + 1)
	_1GUはよい(JUU) 半伯Uはよい(IUUV) 三相3絶弐(3P3M)―三相3絶弐(3P3M)	$(1 \ge 2) - (3 \ge 4)$
	2需圧3需流計法(3\/3A)—単相2線式(1P2\M)	$(1 \ge 2 \ge 3) = 4$
	三相4線式(3P4W)一単相2線式(1P2W)	(1223)-4

Note.

- ・電力測定モジュールが、エレメント番号1のスロットから順番に装着されていることを確認してください。エレメント番号1のスロットに電力測定モジュールを装着しないでエレメント番号2のスロットに電力測定モジュールを装着する、エレメント番号2のスロットに電力測定モジュールを装着するというように、エレメント番号が小さいスロットに電力測定モジュールを装着しないでおくと、正しい測定ができません。モジュールの装着方法につては、「3.3 入力モジュールを装着する」をご覧ください。
- センサ入力モジュールがエレメント番号4のスロットに装着されている場合、電力測定モジュールは3モジュールまでしか装着できません。4つの電力測定モジュールを装着したときの結線方式は選択できません。
- ・ 結線をしたあと、結線方式を選択する必要があります。「5.2 結線方式を選択する」をご覧 ください。
- ・ 結線図の太線は電流が流れる回路です。流れる電流に適した導線を使用してください。
- ・ 三相不平衡の回路で、皮相電力や無効電力を正しく測定するには、3電圧3電流計法(3V3A)で 測定されることをおすすめします。
- 3P3W と3V3Aの結線では、結線対象となる入力エレメントの違いにより、本製品と他製品(別のディジタルパワーメータ)で結線方法が異なる場合があります。正しく測定するため、結線方法をご確認ください。
- ・ 結線方式と測定値/演算値の求め方の関係については、「付録2 測定ファンクションの記号と 求め方」をご覧ください。

単相2線式(1P2W)の結線例

電力測定モジュールが4つの全スロットに装着されている場合,4系統の単相2線式の結線 ができます。

単相3線式(1P3W)の結線例

- ・電力測定モジュールが4つの全スロットに装着されている場合,エレメント1と2,エレ メント3と4というように,2系統の単相3線式の結線ができます。
- ・ 図中の入力端子に対するエレメントの組み合わせは、次のようになります。残りのエレメントには、単相2線式の結線ができます。

入力端子1	入力端子2	
エレメント1	エレメント2	
エレメント2	エレメント3	
エレメント3	エレメント4	

三相3線式(3P3W)の結線例

- ・電力測定モジュールが4つの全スロットに装着されている場合,エレメント1と2,エレ メント3と4というように,2系統の三相3線式の結線ができます。
- ・図中の入力端子に対するエレメントの組み合わせは、次のようになります。残りのエレ メントには、単相2線式の結線ができます。

入力端子1	入力端子2	
エレメント1	エレメント2	
エレメント2	エレメント3	
エレメント3	エレメント4	

3電圧3電流計法(3V3A)の結線例

図中の入力端子に対するエレメントの組み合わせは、次のようになります。残りのエレメントには、単相2線式の結線ができます。

入力端子1	入力端子2	入力端子3	
エレメント1	エレメント2	エレメント3	
エレメント2	エレメント3	エレメント4	

三相4線式(3P4W)の結線例

図中の入力端子に対するエレメントの組み合わせは、次のようになります。残りのエレメントには、単相2線式の結線ができます。

入力端子1	入力端子2	入力端子3	
エレメント1	エレメント2	エレメント3	
エレメント2	エレメント3	エレメント4	

3.8 外部の電流センサを使用して、測定回路を結線する

感電や機器を損傷を防ぐため、「3.4 測定回路の結線時の注意」の注意事項をお守りく ださい。

次のように、測定回路の最大電流値が電流入力端子の最大測定レンジを超える場合、電力測定モジュールの電流センサ入力コネクタに、外部の電流センサからの外部センサ用ケーブルを接続して、測定回路の電流を測定できます。

・電力測定モジュール253751

- 最大電流値が「7Arms」または「10Apeak」を超えるとき
- ・電力測定モジュール253752
 - · 5A端子:最大電流値が「7Arms」または「10Apeak」を超えるとき
 - · 20A端子:最大電流値が「30Arms」または「100Apeak」を超えるとき
- ・外部の電流センサとして、シャント形またはクランプ形電流センサを使用できます。

電流センサ入力コネクタへの接続

電力測定モジュールの電流センサ入力コネクタに、付属のBNCコネクタ付きの外部センサ 用ケーブルを接続します。

結線方式の種類とエレメントの組み合わせ

電力測定モジュールの装着数によって,選択できる結線方式の種類とエレメントの組み合わせが異なります。詳しくは、「3.7 直接入力の測定回路を結線する」の「結線方式の 種類とエレメントの組み合わせ」と「結線例」をご覧ください。 Note

- ・電力測定モジュールが、エレメント番号1のスロットから順番に装着されていることを確認してください。エレメント番号1のスロットに電力測定モジュールを装着しないでエレメント番号2のスロットに電力測定モジュールを装着する、エレメント番号2のスロットに電力測定モジュールを装着するというように、エレメント番号が小さいスロットに電力測定モジュールを装着しないでおくと、正しい測定ができません。モジュールの装着方法につては、「3.3 入力モジュールを装着する」をご覧ください。
- センサ入力モジュールがエレメント番号4のスロットに装着されている場合、電力測定モジュールは3モジュールまでしか装着できません。4つの電力測定モジュールを装着したときの結線方式は選択できません。
- ・ 結線をしたあと、結線方式を選択する必要があります。「5.2 結線方式を選択する」をご覧 ください。
- ・ 結線図の太線は電流が流れる回路です。流れる電流に適した導線を使用してください。
- ・電流センサ入力換算機能を使用して、直接測定したときのデータに換算できます。設定方法は 「5.4 外部の電流センサを使用するときの測定レンジを設定する」をご覧ください。
- · 外部の電流センサの周波数特性や位相特性が測定データに影響します。ご注意ください。
- 接続するときに極性を間違えないよう注意してください。極性を間違えると、測定電流の極性 が反対になり、正しく測定できません。特にクランプ形電流センサの場合は、測定回路をクラ ンプするときに間違え易いので注意してください。
- ・シャント形電流センサを使用する場合,誤差を軽減するため,外部センサ用ケーブルを接続す るとき,次の点に注意してください。
 - ・ 外部センサ用ケーブルのシールド線を、シャントの出力端子(OUT)の L側に接続してください。
 - センサから外部センサ用ケーブルまでの接続線がつくる空間面積をできるだけ小さくしてく ださい。接続線がつくる面積内に入る磁力線(測定電流によるもの)や外部ノイズによる影響 を軽減します。

シャント形電流センサ 接続線がつくる空間面積

・シャント形電流センサは、下図のように電源接地側に接続してください。やむをえず非接地側に接続する場合は、コモンモード電圧による影響を軽減するため、シャント形電流センサと本機器の接続線にはAWG18(導電体断面積約1mm²)より太いものを使用し、十分、安全性や誤差の軽減に配慮した外部センサ用ケーブルを作成してください。

・ 接地されていない測定回路の場合で高周波/大電力の場合には、シャント形電流センサ接続ケー ブルのインダクタンスの影響が大きくなります。このようなときは、アイソレーションセンサ (CT, DC-CT, クランプ)などを使用して測定してください。

- ・ 三相不平衡の回路で、皮相電力や無効電力を正しく測定するには、3電圧3電流計法(3V3A)で 測定されることをおすすめします。
- ・3P3W と3V3Aの結線では、結線対象となる入力エレメントの違いにより、本製品と他製品(別のディジタルパワーメータ)で結線方法が異なる場合があります。正しく測定するため、結線方法をご確認ください。
- ・結線方式と測定値/演算値の求め方の関係については、「付録2 測定ファンクションの記号と 求め方」をご覧ください

以下に示す結線例は、シャント形電流センサを接続するときのものです。クランプ形電流 センサを接続するときは、電流センサをシャント形からクランプ形に置き換えてご覧くだ さい。また、エレメントと下図の入力端子の組み合わせは、「3.7 直接入力の測定回路 を結線する」の「結線例」をご覧ください。

単相2線式(1P2W)で、シャント形電流センサを使用したときの結線例

単相3線式(1P3W)で、シャント形電流センサを使用したときの結線例

三相3線式(3P3W)で、シャント形電流センサを使用したときの結線例

3電圧3電流計法(3V3A)で、シャント形電流センサを使用したときの結線例

三相4線式(3P4W)で、シャント形電流センサを使用したときの結線例

3.9 外部のPT/CTを使用して、測定回路を結線する

電力測定モジュールの電圧/電流入力端子に,外部の変圧器(PT)/変流器(CT)からの測定用 ケーブルを結線します。

感電や機器を損傷を防ぐため、「3.4 測定回路の結線時の注意」の注意事項をお守りく ださい。

- ・測定回路の最大電圧値が電力測定モジュールの最大測定レンジ「1000Vrms」または 「2000Vpeak」を超えるとき、外部にPTを使用して測定できます。
- ・測定回路の最大電流値が電力測定モジュールの最大測定レンジを超えるとき,外部に CTを使用して測定できます。
 - ・電力測定モジュール253751
 - 最大電流値が「7Arms」または「10Apeak」を超えるとき
 - ・電力測定モジュール253752
 - · 5A端子:最大電流値が「7Arms」または「10Apeak」を超えるとき
 - · 20A端子:最大電流値が「30Arms」または「100Apeak」を超えるとき

入力端子への接続

● 電圧入力端子

導電部が露出していない安全端子を、電圧入力端子に差し込んでください。

● 電流入力端子

電力測定モジュール253751には、5A端子があります。

電力測定モジュール253752には、5Aと20Aの2種類の端子がありますが、1つの入力 モジュールで使用できる電流入力は、1系統(1組の電流入力端子)だけです。感電や機器 の損傷を防ぐため、同時に複数の電流入力端子に測定用ケーブルを結線しないでください。

端子(バインディングポスト)の締め付けねじは,M6です。ねじに導線を巻き付けるか,圧着端子をねじ軸に通してから,端子のつまみを持ってしっかり締め付けてください。

電流入力端子と圧着端子との接続時、および、接続したあとの注意につきましては3.4 節をご覧ください。

結線方式の種類とエレメントの組み合わせ

電力測定モジュールの装着数によって,選択できる結線方式の種類とエレメントの組み合わせが異なります。詳しくは、「3.7 直接入力の測定回路を結線する」の「結線方式の 種類とエレメントの組み合わせ」と「結線例」をご覧ください。

Note

- ・電力測定モジュールが、エレメント番号1のスロットから順番に装着されていることを確認してください。エレメント番号1のスロットに電力測定モジュールを装着しないでエレメント番号2のスロットに電力測定モジュールを装着する、エレメント番号2のスロットに電力測定モジュールを装着するというように、エレメント番号が小さいスロットに電力測定モジュールを装着しないでおくと、正しい測定ができません。モジュールの装着方法につては、「3.3 入力モジュールを装着する」をご覧ください。
- センサ入力モジュールがエレメント番号4のスロットに装着されている場合、電力測定モジュールは3モジュールまでしか装着できません。4つの電力測定モジュールを装着したときの結線方式は選択できません。
- ・ 結線をしたあと、結線方式を選択する必要があります。「5.2 結線方式を選択する」をご覧 ください。
- ・ 結線図の太線は電流が流れる回路です。流れる電流に適した導線を使用してください。
- スケーリング機能を使用して、直接測定したときのデータに換算できます。設定方法は「5.5 外部のPT/CTを使用するときのスケーリング機能を設定する」をご覧ください。
- · PT/CTの周波数特性や位相特性が測定データに影響します。ご注意ください。
- ・ 三相不平衡の回路で、皮相電力や無効電力を正しく測定するには、3電圧3電流計法(3V3A)で 測定されることをおすすめします。
- ・ 3P3W と3V3Aの結線では、結線対象となる入力エレメントの違いにより、本製品と他製品(別のディジタルパワーメータ)で結線方法が異なる場合があります。正しく測定するため、結線方法をご確認ください。
- 本節では、安全のため、PTやCTの二次側のコモン端子(+/-)を接地した結線図を示しています。しかし、接地の必要性、および接地させる場所(PT、CT付近で接地させるか、あるいは電力計付近で接地させるか)は、測定対象によって異なります。

エレメントと下図の入力端子の組み合わせは、「3.7 直接入力の測定回路を結線する」 の「結線例」をご覧ください。

単相2線式(1P2W)で, PT/CTを使用したときの結線例

単相3線式(1P3W)で、PT/CTを使用したときの結線例

三相3線式(3P3W)で、PT/CTを使用したときの結線例

3電圧3電流計法(3V3A)で, PT/CTを使用したときの結線例

三相4線式(3P4W)で、PT/CTを使用したときの結線例

3.10 電圧入力が600Vを超える測定回路の結線をする

電圧入力端子間の電圧が600Vを超える場合は、電流入力端子に電流を直接入力しないで ください。アイソレーションセンサ(CT, DC-CT, クランプ)の出力を、電流センサ入力コ ネクタに接続してください。

結線時の注意事項については、3.8節や3.9節もご覧ください。

3.11 電源スイッチをON/OFFする

電源をONにする前に確認すること

・本機器が正しく設置されているか→「3.2 本機器を設置する」

- ・入力モジュールが正しく装着されているか→「3.3 入力モジュールを装着する」
- ・電源コードが正しく接続されているか→「3.6 電源を接続する」
- ・測定回路が正しく結線されているか→「3.7 直接入力の測定回路を結線する」,「3.8 外部の電流センサを使用して、測定回路を結線する」,「3.9 外部のPT/CTを使用 して、測定回路を結線する」,「3.10 電圧入力が600Vを超える測定回路の結線をす る」

電源スイッチの位置

電源スイッチはフロントパネルの左下にあります。

電源スイッチのON/OFF

プッシュボタンで、1度押すと「ON」になり、もう1度押すと「OFF」になります。

電源スイッチのON/OFFの順序

オプションのSCSIインタフェース付きの製品で、外部にSCSIデバイスを接続し、本機器 からデータを保存/読み込みするときは、SCSIデバイスの電源スイッチををONにしてか ら、本機器の電源スイッチをONにしてください。OFFにするときは、ONのときと反対の 順序でOFFにしてください。

電源スイッチON時の動作

電源スイッチをONにすると、自動的にセルフテストが開始されます。正常に終了すると、 電源スイッチOFF時に表示されていた画面になります。

Note.

電源スイッチをONにしても上記の動作をしないときは、電源スイッチをOFFにしてから、次のことを確認してください。

- ・ 電源コードが確実に接続されているか
- ・電源コンセントに正しい電圧が来ているか→「3.6 電源を接続する」
- ・ 電源ヒューズが切れていないか→「16.5 電源ヒューズを交換する」
- ・RESETキーを押しながら電源スイッチをONにすると、設定内容が初期化(工場出荷時の状態に戻すこと)されます。設定の初期化については、「4.2 設定を初期化(イニシャライズ) する」をご覧ください。

確認後に電源スイッチをONにしても変わらない場合は、お買い求め先に修理をお申しつけく ださい。 精度のよい測定をするには

 ・電源スイッチをONにしてから、30分以上のウォーミングアップをしてください。
 ・ウォーミングアップ後、ゼロレベル補正をしてください。→「4.4 ゼロレベル補正を する」

電源スイッチOFF時の動作

電源スイッチをOFFにする直前の設定情報を記憶します。電源コードが抜けたときも同じ です。次に電源スイッチをONにすると、電源スイッチをOFFにする直前の設定状態で立 ち上がります。

Note _

設定情報を記憶保持するためにリチウム電池を使用しています。リチウム電池の電圧値が所定 の値以下になると、電源スイッチをONにしたとき、画面にメッセージ(16.2節参照)が表示され ます。たびたびこのメッセージが表示されるときは、速やかにリチウム電池を交換する必要が あります。電池の交換はお客様ではできません。お買い求め先にお申しつけください。電池の 寿命については、16.6節をご覧ください。

3.12 日付・時刻を合わせる

操作キー

・操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Date/Time]のソフトキーを押します。日付・時刻設定ダイアログボックスが表示されます。
- 日付・時刻を表示する(ON)/しない(OFF)を選択する
 - 3. ジョグシャトルを回して, [Display]を選択します。
 - 4. SELECTキーを押して, [ON]または[OFF]を選択します。
- 日付または時刻を設定する
 - 5. ジョグシャトルを回して, [Date]または[Time]を選択します。
 - 6. SELECTキーを押します。キーボードが表示されます。
 - キーボードを操作して、日付または時刻を設定します。
 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。
- 設定した内容を確定する
 - 8. ジョグシャトルを回して, [Set]を選択します。
 - 9. SELECTキーを押します。操作4で[ON]を選択しているときは、画面右下に、設定した日付・時刻が表示されます。SELECTキーを押さずに操作を中断すると、設定内容は画面表示に反映されません。

● 日付・時刻の表示ON/OFF

画面右下に、設定した日付・時刻を、表示するかしないかの選択ができます。

- OFF:日付・時刻を表示しません。
- ON:日付・時刻を表示します。
- ●日付・時刻の設定
 - ・日付の設定

YY/MM/DD(年/月/日)の形式で、日付を設定できます。年は西暦の下2桁を設定します。2000~2098年は00~98を、1999は99を設定します。

・時刻の設定

HH:MM:SS(時:分:秒)の形式で、時刻を設定できます。時間は24時制で設定します。

● 設定内容の確定

日付・時刻の表示ON/OFFは,選択した時点で画面表示に反映されますが,日付・時刻の設定を確定しないで,操作を中断すると,それまで設定した内容は,画面表示に反映されません。ご注意ください。

Note _

・日付・時刻のデータは、電源を切っても内蔵のリチウム電池でバックアップされます。
 ・本機器は、うるう年のデータを持っています。設定内容の確定操作をしたときに、本機器の内部で判定します。うるう年でないときに「2/29」を入力すると、エラーメッセージを表示します。

4.1 数値や文字列を入力する

数値の入力

● ロータリノブによる入力

表示メニューにかかわらず、観測時間を設定できます。

● ジョグシャトルによる入力

ソフトキーやSELECTキーで設定項目を選択したあと、ジョグシャトルで数値を設定で きます。外側のシャトルリングは、回した角度によりジョグダイヤルより設定ステップ が大きくなります。ジョグシャトルの下の矢印キーで桁が移動できる項目もあります。

Power ModuleM	Input
Pouer nodule Pouer nodule Fouer nodule Fouer nodule Element 1 Element 2 (206 Shurt) Colspan="2">Pouer Pouer Colspan="2">Pouer Colspan="2">Pouer Colspan="2">Pouer Colspan="2">Colspan="2">Pouer Terminal Eal Sen_206 EAl Sen_206 EAl Sen_206 I Mange 106pk 106pk 106pk Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"	r Hodule

Note.

ジョグシャトルで設定できる項目は、RESETキーを押すと、初期値にリセットされます。

文字列の入力

日付・時刻,ファイル名,およびコメントは,画面に表示されるキーボードで入力できま す。ジョグシャトル,SELECTキーおよび矢印キーで,キーボードを操作して,文字列を 入力します。ユーザー定義ファンクションや波形演算の演算式を作るときに表示される キーボードには,特殊なキーがあります。次ページのNoteをご覧ください。

● キーボードの操作方法

- 1. ジョグシャトルを回して、入力する文字を選択します。
- SELECTキーを押すと、文字が入力欄に入ります。
 日付・時刻など、すでに入力欄に文字列がある場合は、矢印キーで入力位置を選択します。
- 3. 操作1~2を繰り返して、すべての文字を入力します。
- すべての文字を入力したあと、キーボード上の[ENT]を選択して、SELECTキー を押します。文字列が確定し、キーボードが消えます。

4

共通操作

● 文字以外のキー

- ・DELまたはBS:入力位置の1つ前の文字を消します。
- ・ INS: 挿入/上書きモードを切り替えます。挿入モードのときは、キーボード内の INSERTインジケータが点灯します。挿入モードで新しく文字を入力すると、入力位 置に新しい文字が入り、入力位置より後ろの文字は、後方にずれます。
- ・CLR:表示されている文字をすべて消します。
- · CAPS:アルファベットの大文字/小文字を切り替えます。
- · SPACE:1スペースを入力します。
- ・ENT:表示されている文字を決定します。

● 使用できる文字数と種類

設定内容 文字数	使用できる文字
	0~9(/, :) 0~9, A~Z, %, _, ()(カッコ), -(マイナス) すべての文字(スペース含む)

Note.

- ファイル名の場合、大文字と小文字の区別はありません。コメントは区別します。また、MS-DOSの制限により、次の5つのファイル名は使用できません。
 AUX、CON、PRN、NUL、CLOCK
- ・ GP-IB/シリアルインタフェースのコマンドを使ってファイル名を入力するときは、本機器の キーボードにはない以下の記号も使用できます。
 - { }
- ユーザー定義ファンクションや波形演算の演算式を作るときに表示されるキーボードは、下図のようになります。長い関数名が1つのキーで選択できるようになっています。また、長い演算式を内部メモリに一時記憶させて、別の演算式に流用できる機能もあります。一時記憶させる手順は、1.演算式を設定したあと、キーボード上の[ENT]を選択する。
 2.SELECTキーを押すと、演算式が確定されるのと同時に、演算式が一時記憶されます。一時記憶された演算式を呼び出す手順は、1.キーボード上のマニキーを選択しSELECTキーを押して、ウインドウを開きます。
 2.一時記憶された演算式が表示されるので、呼び出したい演算式を選択してSELECTキーを押すと、選択した演算式がまーボード上の入力欄に表示されます。
 2.一時記憶された演算式がキーボード上の入力欄に表示されます。
 2.あらかじめ入力欄に文字列があっても、呼び出した演算式が上書きされます。
 3.最大5個の演算式を記憶できます。5個を超えると、一番古いものから順次消去されます。

4.2 設定を初期化(イニシャライズ)する

操作キー

探信途中で、メニューから扱い出すで

操作

Note .

設定を初期化していいかどうかを確認したうえで、初期化を実行してください。初期化を実行する と元に戻せません。初期化する前に設定情報を保存(12.5節参照)しておくことをおすすめします。

- 1. SETUPキーを押します。
- 「Initialize」のソフトキーを押します。表示されるダイアログボックスで「OK」 を選択すると、初期化が実行されます。

	1
Setup Mode	
NUTHAT	
Wiring 1P2W-1P2W	
Display Resolution 5dgts 6dgts	
Initialize	

解 説

キーで設定した値を工場出荷時の状態に戻せます。以前の設定を取り消したいときや、初 めから設定をやり直すときなどに便利です。初期設定の詳細は、「付録4 初期設定/数値 データの表示順一覧表」をご覧ください。

● 初期化できない設定

- ・日付・時刻の設定
- ・データの保存と読み込みに関する設定
- · 画面イメージデータの出力に関する設定
- · GP-IBインタフェース、シリアルインタフェースに関する設定
- · SCSI ID番号の設定(SCSIインタフェースはオプションです。)

● 電源ONのときに初期化する場合

RESETキーを押しながら電源スイッチをONにすると、初期設定の状態で本機器が立ち 上がります。このときには、上記の日付・時刻の設定を除く「●初期化できない設定」 も初期化されます。

4.3 データの取り込みをスタート/ストップする

操作キー

ーを押します。

操作

● START/STOPキーを押したときの動作

START/STOPキーを押すと、アクイジションメモリへのデータの取り込みをスター ト/ストップします。キー上のインジケータが点灯しているときが、取り込み中です。

● SINGLE STARTキーを押したときの動作

SINGLE STARTキーを押すと、アクイジションメモリへのデータの取り込みをスタート(START/STOPキー上のインジケータが点灯)します。スタート後、1回だけトリガの設定に応じた取り込みをすると、自動的に取り込みをストップ(START/STOPキー上のインジケータが消灯)します。

● SHIFT+SINGLE START(ABORT)キーを押したときの動作

- START/STOPキーでアクイジションメモリへのデータの取り込みをスタートしているときに、SHIFT+SINGLE START(ABORT)キーを押すと、データの取り込みが中断されます。
- アクイジションメモリへのデータの取り込みをストップしているときに、SHIFT+ SINGLE START(ABORT)キーを押すと、すでに取り込まれていたアクイジション メモリのデータは消去されます。数値演算や波形解析のデータも消去されます。

● START/STOPキーによるデータの取り込み停止と、SHIFT+SINGLE START(ABORT) キーによるデータの取り込み中断の相違

START/STOPキーによるデータの取り込み停止のときは、表示レコード長分のサンプ リングデータを取り込んでから、取り込みを止めます。したがって、数値データの測 定/演算/表示や波形の表示ができます。

SHIFT+SINGLE START(ABORT)キーによるデータの取り込み中断のときは、キーを 押した時点で波形の取り込みを止めます。したがって、数値データの測定/演算/表示や 波形の表示ができません。この状態を避ける方法として、レコード長を分割する方法が あります。レコード長の分割については、「6.2 データを取り込むレコード長を選択 する」をご覧ください。

● START/STOPキー, SINGLE STARTキーが無効なとき

- ·通信によるリモート状態のとき(REMOTEインジケータが点灯しているとき)
- ・プリンタ出力中
- ・記憶媒体にアクセス中のとき

Note .

- ・取り込み条件を変更してスタートすると、それ以前にアクイジションメモリに取り込まれた データは消去されます。
- ・ 取り込み中に記憶媒体(メディア)にアクセスしようとすると、エラーが発生します。
- ・ 取り込みをストップすると、アベレージング処理が中断されます。
- · 再スタートすると、続けてアベレージング処理が実行されます。

4.4 ゼロレベル補正をする

操作キー

操 作

説

CALキーを押します。ゼロレベル補正が実行されます。

● ゼロレベル補正

- 本機器の仕様(17章参照)を満たすため、本機器の内部回路で入力信号ゼロの状態をつくり、そのときのレベルを、ゼロレベルとする機能です。
- ・CALキーを押すとゼロレベルの補正が実行されます。
- ・測定モード,測定レンジ,入力端子,入力フィルタを変更したあと,1回目の測定を したときにゼロレベル補正されます。

Note _

- ・精度のよい測定をするには、ウォーミングアップを30分以上してから、ゼロレベル補正をして 測定されることをおすすめします。また、周囲温度が仕様範囲内(17章参照)で安定していることも必要です。
- ・長時間,測定モード,測定レンジおよび入力フィルタを変更していないときは、本機器周囲の 環境変化でゼロレベルが変化している場合があります。このようなときに、ゼロレベルの補正 をされることをおすすめします。

4.5 NULL機能を使う

操作キー

解

説

NULLキーを押して、NULLキーの左上のインジケータを点灯させると、NULL機能が動作します。

● NULL值

NULL機能をONにしたときに、1回前に測定されたUdcとIdc(通常測定モードのときは 電圧/電流の単純平均の数値データ、高調波測定モードのときはU(dc)とI(dc)),および SpeedとTorque(モータモジュール使用時で、センサからの入力信号が直流電圧の場 合)が、NULL値として設定されます。1回前の測定されたUdc、Idc、Speedおよび Torqueがない場合、たとえば電源をONして、測定をしないでNULL機能をONにした ときのような場合は、UdcとIdcは「0(ゼロ)」になります。

Note .

NULL値を設定するときは、できるだけ電圧や電流の測定レンジを小さくすることをおすすめ します。小さい測定レンジのほうが、測定分解能が上がり、NULL値をより正しく測定できま す。

● NULL機能の影響を受ける測定ファンクション

サンプリングデータからNULL値が差し引かれます。このため、すべての測定ファンクションが、NULL値の影響を受けます。

4.6 ヘルプ機能を使う

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

● ヘルプウインドウの表示

- 1. HELPキーを押します。ヘルプウインドウが開きます。
- 2. 設定情報を調べたい操作キーまたはソフトキーを押します。押したキーに関連した設定情報が表示されます。

● ヘルプウインドウの消去

3. ヘルプウインドウが表示されているとき,HELPキーを押します。ヘルプウイン ドウが消えます。

解 説

操作

HELPキーを押すと、HELPキーを押す直前に表示されていたソフトキーメニュー、または、ジョグシャトルメニューの設定に関する情報(ヘルプ文)を書き込んだヘルプウインドウが、表示されます。

ヘルプウインドウが表示されている状態でどれかのキーを押すと,押したキーに関連する 内容のヘルプ文がヘルプウインドウに表示されます。

5.1 測定モードを選択する

操作キー

《機能説明は1.2節》

ーを押します。

操作

- 1. SETUPキーを押します。Setup設定メニューが表示されます。
- 2. [Mode]のソフトキーを押します。測定モード設定メニューが表示されます。
- 3. [Normal]または[Harmonics]のどちらかのソフトキーを押して,測定モードを選択します。

	~
Mode	
Harmonics	
↓ Wiring 1P2W-1P2W	
Display Resolution 5dgts 6dgts	
Initialize	
Uiring 1P2U-1P2U Display Resolution Fdgt3 6dgts	

解 説

測定モードには,通常測定と高調波測定の2つのモードがあります。測定モードによって,サンプリングデータの扱いや測定ファンクションの種類などが異なります。詳細は, 「1.2 測定モードと測定/演算区間」をご覧ください。

測定モードの選択

次の中から選択できます。

- · Normal:通常測定モードになります。
- ・Harmonics:高調波測定モードになります。

Note _

データ取り込み中は、測定モードの切り替えはできません。

5
5.2 結線方式を選択する

操作キー

《機能説明は1.2節》

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. SETUPキーを押します。Setupメニューが表示されます。
- 2. [Wiring]のソフトキーを押します。結線方式選択メニューが表示されます。
- 3. ジョグシャトルを回して、結線方式を選択します。
- 4. SELECTキーを押して,結線方式を確定します。

A +Select	Setup	
1PZW-1PZW	Norma 1	
1P2₩-1P3₩		
1P2W-3P3W		
1P2W-3V3A		
1P2W-3P4W		
1P3W-1P2W	↓ Wiring	
1P3W-1P3W	1P2W-1P2W	
1P3W-3P3W	Dísplay	
3P3W-1P2W	Resolution 5dgts 6dgts	
3P3W-1P3W		
3P3W-3P3W		
3V3A-1P2₩ ▼	Initialize	
	ا لـــــا ا	ررك

解 説

各エレメントに入力される信号の組み合わせ方法が結線方式です。結線方式にしたがって をファンクションの数値データが求められます。結線方式は、電力測定モジュールがどの エレメントのスロットに装着されているかによって、選択肢が異なります。結線方式は、 次表の中から選択できます。

ただし、表中の結線記号は次の意味を表します。

1P2W:単相2線式,1P3W:単相3線式,3P3W:三相3線式,3V3A:3電圧3電流計法,3P4W:三相4線式

・エレメント番号1のスロットだけに電力測定モジュールが装着されている場合 選択メニューは表示されません。

結線方式 A-(B)	Σファンクションの数値データ
1P2W	 ・ ≤ A:エレメント1の数値データが表示されます。 ・ ≤ B:数値データはありません。

・エレメント番号1と2のスロットに電力測定モジュールが装着されている場合

選択できる 結線方式 A-(B)	Σファンクションの数値データ
1P2W-1P2W	・ ∑A:エレメント1の数値データが表示されます。 ・ ∑B:エレメント2の数値データが表示されます。
1P3W	 ・ SA:エレメント1と2を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。 ・ SB:数値データはありません。
3P3W	 ・ ∑A:エレメント1と2を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:数値データはありません。

・エレメント番号1と2と3のスロットに電力測定モジュールが装着されている場合

選択できる 結線方式 A-(B)	Σファンクションの数値データ
1P2W-1P2W	・∑A:エレメント1の数値データが表示されます。 ・∑B:エレメント2の数値データが表示されます。 *エレメント3も1P2Wとして扱われます。∑A, ∑Bには影響しません。
1P2W-1P3W	 ・ SA:エレメント1の数値データが表示されます。 ・ SB:エレメント2と3を組み合わせて、1P3Wの結線方式にしたときの数値データが表示されます。
1P2W-3P3W	 ・ SA:エレメント1の数値データが表示されます。 ・ SB:エレメント2と3を組み合わせて、3P3Wの結線方式にしたときの数値データが表示されます。
1P3W-1P2W	 ・ SA:エレメント1と2を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。 ・ SB:エレメント3の数値データが表示されます。
3P3W-1P2W	 ・ SA:エレメント1と2を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。 ・ SB:エレメント3の数値データが表示されます。
3V3A	 ・ ∑A:エレメント1と2と3を組み合わせて、3V3Aの結線方式にしたときの 数値データが表示されます。 ・ ∑B:数値データはありません。
3P4W	 ・ SA:エレメント1と2と3を組み合わせて、3P4Wの結線方式にしたときの 数値データが表示されます。 ・ SB:数値データはありません。

・エレメント番号1と2と3と4のスロットに電力測定モジュールが装着されている場合

選択できる 結線方式 A-(B)	Σファンクションの数値データ
1P2W-1P2W	· ∑A:エレメント1の数値データが表示されます。 · ∑B:エレメント2の数値データが表示されます。 * エレメント3と4も1P2Wとして扱われます。∑A, ∑Bには影響しません。
1P2W-1P3W	 ・ SA:エレメント1の数値データが表示されます。 ・ SB:エレメント2と3を組み合わせて、1P3Wの結線方式にしたときの数値データが表示されます。 * エレメント4は1P2Wとして扱われます。SA、SBには影響しません。
1P2W-3P3W	 ・ SA:エレメント1の数値データが表示されます。 ・ SB:エレメント2と3を組み合わせて、3P3Wの結線方式にしたときの数値データが表示されます。 * エレメント4は1P2Wとして扱われます。SA、SBには影響しません。
1P2W-3V3A	 ・ ∑A: エレメント1の数値データが表示されます。 ・ ∑B: エレメント2と3と4を組み合わせて、3V3Aの結線方式にしたときの 数値データが表示されます。
1P2W-3P4W	 ・ EA:エレメント1の数値データが表示されます。 ・ EB:エレメント2と3と4を組み合わせて、3P4Wの結線方式にしたときの 数値データが表示されます。
1P3W-1P2W	 ・ ∑A:エレメント1と2を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3の数値データが表示されます。 * エレメント4は1P2Wとして扱われます。∑A, ∑Bには影響しません。
1P3W-1P3W	 ・ ∑A:エレメント1と2を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3と4を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。
1P3W-3P3W	 ・ ∑A:エレメント1と2を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3と4を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。
3P3W-1P2W	 ・ ∑A:エレメント1と2を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3の数値データが表示されます。 * エレメント4は1P2Wとして扱われます。∑A、∑Bには影響しません。
3P3W-1P3W	 ・ ∑A:エレメント1と2を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3と4を組み合わせて、1P3Wの結線方式にしたときの数 値データが表示されます。
3P3W-3P3W	 ・ ∑A:エレメント1と2を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。 ・ ∑B:エレメント3と4を組み合わせて、3P3Wの結線方式にしたときの数 値データが表示されます。
3V3A-1P2W	 ・ ∑A:エレメント1と2と3を組み合わせて、3V3Aの結線方式にしたときの 数値データが表示されます。 ・ ∑B:エレメント4の数値データが表示されます。
3P4W-1P2W	 ・ ΣA:エレメント1と2と3を組み合わせて、3P4Wの結線方式にしたときの 数値データが表示されます。 ・ ΣB:エレメント4の数値データが表示されます。

- Note
 ・電力測定モジュールが、エレメント番号1のスロットから順番に装着されていることを確認してください。エレメント番号1のスロットに電力測定モジュールを装着しないでエレメント番号2のスロットに電力測定モジュールを装着しないでエレメント番号1と3のスロットに電力測定モジュールを装着するというように、エレメント番号が小さいスロットに電力測定モジュールを装着しないでおくと、正しい測定ができません。モジュールの装着方法につては、「3.3 入力モジュールを装着する」をご覧ください。
 - センサ入力モジュールがエレメント番号4のスロットに装着されている場合、電力測定モジュールは3モジュールまでしか装着できません。4つの電力測定モジュールを装着したときの結線方式は選択できません。
 - ・実際に結線されている測定回路に合わせて、結線方式を選択してください。結線方式により
 ファンクションを求める方法が異なります。測定回路に合った結線方式を選択していない場合、正しくない測定/演算結果になります。
 - データの取り込みを停止しているときに、結線方式を切り替えたときのをファンクションを求めるには、数値演算の再実行(10.1節参照)をしてください。
 - · 結線方式とΣファンクションの求め方の関係については,「付録2」をご覧ください。

5.3 直接入力のときの測定レンジを設定する

操作キー

《機能説明は1.3節》

全画面メニューでエレメントごとに設定する

電力測定モジュールの測定レンジをエレメントごとに設定します。

- INPUTキーを押します。Input設定メニューが表示されます。 ファームウエアパージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示されます。
- 2. [Power Module (Each)]のソフトキーを押します。パワーモジュール設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また,センサ 入力モジュールがエレメント番号4のスロットに装着されているときは,エレメント4の メニューは表示されません。

● 電圧レンジを設定する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[U Range]を選択します。
- 4. SELECTキーを押します。電圧レンジ選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [2000Vpk]~[30Vpk], [Auto]のどれかを選択しま す。
- 6. SELECTキーを押して, 電圧レンジを確定します。

● 電流レンジを設定する

・電流入力端子を選択する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[Terminal]を選択します。
- 4. SELECTキーを押して、[5A]または[20A]のどちらかを選択します。 電力測定モジュール253751のときは、[20A]の選択はできません。

・電流レンジを選択する

- 5. ジョグシャトルを回して,設定しようとするエレメントの[I Range]を選択します。
- 6. SELECTキーを押します。電流レンジ選択ボックスが表示されます。
- ジョグシャトルを回して、電流入力端子が[5A]のときは[10Apk]~[0.1Apk], [Auto],電流入力端子が[20A]のときは[100Apk]~[1Apk], [Auto]のどれかを選 択します。
- 8. SELECTキーを押して、電流レンジを確定します。

		Power Module		
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Vpk	2000Upk	_2000Upk	_2000Vpk
Term ina 1	5A Sen_20A	5A Sen_20A	5A Sen_20A	5A Sen_20A
I Range Sensor	10Apk	10Apk	10Apk	10Apk
Ratio(mV/A	0.0000	0.0000	0.0000	0.0000
Filter Zero Cross	OFF	OFF	OFF	OFF
Filter	OFF	OFF	OFF	OFF
Sca1ing	DFF ON	DFF ON	DFF ON	DFF ON
Pt Ratio	0.0000	0.0000	0.0000	0.0000
Ct Ratio	0.0000	0.0000	0.0000	0.0000
Factor	0.0000	0.0000	0.0000	0.0000

		Power Module		
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Vpk	_2000Vpk	_2000Vpk	_2000Upk
Termína 1	_5A Sen_20A	5A Sen_20A	_5A Sen_20A	5A Sen_20A
I Range	10Apk	+Select	1-10Apk	10Apk
Ratio(mV/A	0.0000	10Apk	0.0000	0.0000
Line Filter	0FF	4Apk	OFF	0FF
Zero Cross Filter	OFF	ZApk	OFF	OFF
Sca1 ing	_DFFON	1Apk	OFFON_	_DFFON
Pt Ratio	0.0000	0.4Apk	0.0000	0.0000
Ct Ratio	0.0000	0.2Apk	0.0000	0.0000
Factor	0.0000	0.1Apk	0.0000	0.0000
		Auto		

全画面メニューで一括設定する

電力測定モジュールの測定レンジを、一括して設定します。ファームウエアバージョン 2.01以降の製品(PZ4000)に適用できます。

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Power Module (All)]のソフトキーを押します。パワーモジュールAll設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また、センサ 入力モジュールがエレメント番号4のスロットに装着されているときは、エレメント4の メニューは表示されません。

● 電圧レンジを設定する

- 3. ジョグシャトルを回して、エレメント1の[U Range]を選択します。
- 4. SELECTキーを押します。電圧レンジ選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [2000Vpk]~[30Vpk], [Auto]のどれかを選択しま す。
- 6. SELECTキーを押して、電圧レンジを確定します。表示されている他のモジュー ルの[U Range]も同じ電圧レンジに設定されます。

	Po	wer Module Al	1	
Ele (St	ment 1 andard)	Element 2 (Standard)	Element 3 (Standard)	Element 4 (Standard)
U Range20	900pk	+Select-	_2000Vpk	2000Vpk
Terminal 5A	Sen	2000Vpk	5ASen	_5A _Sen_
I Range 1	0Apk	1200Vpk	10Apk	10Apk
Sensor Ratio(mV/A)	10.0000	600Vpk	10.0000	_ 10.0000_
Filter	DFF	300Vpk	OFF	OFF
Zero Cross Filter	DFF	200Vpk	OFF	OFF
Scaling	ON	120Vpk	OFFON	DFFON
Pt Ratio	1.0000	60Vpk	1.0000	1.0000
Ct Ratio	1.0000	30Vpk	1.0000	1.0000
Factor	1.0000	Auto	1.0000	1.0000

● 電流レンジを設定する

・電流入力端子を選択する

- 3. ジョグシャトルを回して、エレメント1の[Terminal]を選択します。
- 4. SELECTキーを押して, [5A]または[20A]のどちらかを選択します。表示されて いる他のモジュールの[Terminal]も同じ[5A]または[20A]に設定されます。
 - ・電力測定モジュール253751のときは、[20A]の選択はできません。
 - ・エレメント1が電力測定モジュール253752で[20A]を選択できても、253752ではない 他のモジュールは[20A]に設定されません。
 - エレメント1が電力測定モジュール253751の場合,[20A]を選択できないので,他のモジュールが253752であっても[20A]に設定できません。[20A]に設定する操作方法については,前項の「全画面メニューでエレメントごとに設定する」をご覧ください。
- ・ 電流レンジを選択する
- 5. ジョグシャトルを回して,エレメント1の[I Range]を選択します。
- 6. SELECTキーを押します。電流レンジ選択ボックスが表示されます。
- ジョグシャトルを回して、電流入力端子が[5A]のときは[10Apk]~[0.1Apk], [Auto],電流入力端子が[20A]のときは[100Apk]~[1Apk], [Auto]のどれかを選 択します。
- SELECTキーを押して、電流レンジを確定します。エレメント1と同じ電流入力端 子[Terminal]に設定されている他のモジュールの[I Range]も同じ電流レンジにな ります。

	P	ower Module A	11	
	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range	_2000Upk	_2000Upk	_2000Vpk	2000Vpk
Term i na l	_5A _Sen_	5A Sen_20A	_5A _Sen_	_5A _Sen_
I Range Sensor	10Apk	10Apk	10Apk	10Apk
Ratio(mV/A	10.0000	_ 10.0000_	10.0000	10.0000
Filter Zero Cross	OFF	OFF	OFF	OFF
Filter	OFF	OFF	OFF	OFF
Scaling	_DFFON	DFFON	DFF ON	DFFON
Pt Ratio	1.0000	1.0000	1.0000	1.0000
Ct Ratio Scaling	1.0000	1.0000	1.0000	1.0000
Factor	1.0000	1.0000	1.0000	1.0000

Power Module All			
Element 1 (Standard)	Element 2) (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range2000Upk	2000Vpk	2000Upk	2000Vpk
Terminal <u>5A</u> Sen	5A Sen_20A	_5A _Sen_	_5A _Sen_
I Range10Apk Sensor	+Select	10Apk	10Apk
Ratio(mV/A)10.0000 Line	10Apk	10.0000	10.0000_
FilterOFF	4Apk	OFF	OFF
Filter OFF	ZApk	OFF	OFF
ScalingOFFON	1Apk	DFFON	_DFFON
Pt Ratio1.0000	0.4Apk	1.0000	1.0000_
Ct Ratio _ 1.0000	0.ZApk	1.0000	_ 1.0000_
Factor _ 1.0000	0.1Apk	1.0000	_ 1.0000_
	Auto		

チャネル設定メニューで設定する

● 電圧レンジを設定する

1. CH1, CH3, CH5, CH7キーから,設定しようとするチャネルキーを押します。 チャネル設定メニューが表示されます。

モータモジュールがエレメント番号4のスロットに装着されているときにCH7キーを押 すと、回転速度信号入力用のメニューが表示されます。設定操作については15章をご覧 ください。

- 2. [U Range]のソフトキーを押します。電圧レンジ選択ボックスが表示されます。
- 3. ジョグシャトルを回して, [2000Vpk]~[30Vpk], [Auto]のどれかを選択しま す。
- 4. SELECTキーを押して,電圧レンジを確定します。

		-	~
		<u>CH1</u> Wave Display DFF ON	
F	+Select		
	2000Vpk		
l	1200Vpk		
	600Vpk	2000Vpk	
l	300Vpk		
	200Vpk		
l	120Vpk	O VZ00M	
	60Vpk	x0.1	
l	30∪pk		
	Auto		
	ll		

● 電流レンジを設定する

1. CH2, CH4, CH6, CH8キーから, 設定しようとするチャネルキーを押します。 チャネル設定メニューが表示されます。

モータモジュールがエレメント番号4のスロットに装着されているときにCH8キーを押 すと、トルク信号入力用のメニューが表示されます。設定操作については15章をご覧く ださい。

- ・電流入力端子を選択する
- 2. [Terminal]のソフトキーを押して, [5A]または[20A]のどちらかを選択します。 電力測定モジュール253751のときは, [20A]の選択はできません。

・電流レンジを選択する

- 3. [I Range]のソフトキーを押します。電流レンジ選択ボックスが表示されます。
- ジョグシャトルを回して、[Terminal]が[5A]のときは[10Apk]~[0.1Apk], [Auto], [Terminal]が[20A]のときは[100Apk]~[1Apk], [Auto]のどれかを選択 します。
- 5. SELECTキーを押して, 電流レンジを確定します。

5

5.3 直接入力のときの測定レンジを設定する

解 説

警告

安全にご使用いただくため,測定する電流が7A(実効値)を超える場合は,測定す る電流以上の電流を流すことが可能なケーブルまたは導体を使って,本機器を操 作する前に必ず保護接地してください。保護接地端子の有無の詳細については, お買い求め先にお問い合わせください。

● 電圧レンジ/電流レンジの設定

全画面メニューとチャネル設定メニューのどちらでも設定できます。 レンジには、固定レンジとオートレンジの2種類があります。

- ・固定レンジ
 - ・電圧レンジ

2000Vpk, 1200Vpk, 600Vpk, 300Vpk, 200Vpk, 120Vpk, 60Vpk, 30Vpkの中から選択できます。

- ・電流レンジ
 - ・電流入力端子5Aの場合
 10Apk, 4Apk, 2Apk, 1Apk, 0.4Apk, 0.2Apk, 0.1Apkの中から選択で
 きます。
 - ・電流入力端子20Aの場合
 100Apk, 40Apk, 20Apk, 10Apk, 4Apk, 2Apk, 1Apkの中から選択で きます。

Note .

 ・レンジの設定は、入力信号のピーク値を基準に設定します。たとえば、100Vrmsの正弦波 を入力する場合は、ピーク値が約141Vになるので、[200Vpk]のレンジを設定します。
 ・PWIM(Pulse Width Modulation)インパータ波形のような、パルス状の波形を含む入力信号 をラインフィルタを通して測定する場合、ラインフィルタをOFFにして、入力信号のピーク 値がピークオーバ(画面左上のUoverまたはloverインジケータが赤色になる)にならないレン ジを設定してください。ラインフィルタのカットオフ周波数よりも高い周波数のパルス状の 波形を含む入力信号の場合、設定したレンジによっては、入力信号のピーク値を正確に検出 できない場合があります。 ・オートレンジ

レンジ設定で[Auto]を選択するとオートレンジになります。入力信号の大きさに よって、次のように自動的にレンジが切り替わります。切り替わるレンジの種類 は、固定レンジと同じです。

- ・レンジアップ
 - ・数値データU+pk, U-pkが, 設定されている電圧レンジの80%以上になったとき, 次のサンプリングデータを取り込むときに電圧レンジをアップします。
 - ・数値データI+pk, I-pkが,設定されている電流レンジの80%以上になったとき,次のサンプリングデータを取り込むときに電流レンジをアップします。
- ・レンジダウン
 - ・数値データU+pk, U-pkが, 設定されている電圧レンジの15%以下になったとき, 次のサンプリングデータを取り込むときに電圧レンジをダウンします。
 - ・数値データI+pk, I-pkが,設定されている電流レンジの15%以下になったとき,次のサンプリングデータを取り込むときに電流レンジをダウンします。

Note

- ・数値データの測定/演算をしないとき(10.1節参照),メニューでは[Auto]の選択ができますが, オートレンジになりません。直前に設定されていたレンジが,そのまま設定されます。
- ・オートレンジのとき、不定期なパルス状の波形が入力された場合、レンジが一定に保たれない ときがあります。このときは、固定レンジにしてください。
- パルス状の波形を含む入力信号をラインフィルタを通して測定する場合、オートレンジでは正常にレンジ設定されず、正確に測定できない場合があります。PWMインバータなどの入力信号を測定するときは、PWM波高値を基準とした固定レンジで測定することをおすすめします。

● 電力レンジ

有効電力(P),皮相電力(S),無効電力(Q)の測定レンジ(電力レンジ)は、次のようになります。

	雷カレンジ
1P2W(単相2線式)	電圧レンジ×電流レンジ
1P3W(単相3線式) 3P3W(三相3線式) 3V3A(3電圧3電流計法)	電圧レンジ×電流レンジ×2 (対象になっている各エレメントの電圧や電流レンジが, 同じレンジの場合)
	電圧レンジ×電流レンジ×3 (対象になっている各エレメントの電圧や電流レンジが, 同じレンジの場合)

- ・電圧レンジ×電流レンジの結果が、1000W(またはVA, var)以上になると、表示単位はkWまたはkVA, kvar)になります。
- ・最大表示は 99999(5桁)または999999(6桁)です。桁数の選択は、「8.1 表示桁 数を選択する」をご覧ください。

Note _

オートレンジの場合、レンジのアップダウン条件により電圧や電流レンジがそれぞれ切り替わ るため、同じ電力値でも異なった電力レンジに設定されるときがあります。 前ページの表に従って,具体的な電圧レンジと電流レンジの組み合わせと電力レンジの一 覧表を,以下に記載します。下表は有効電力(単位:W)のレンジについて記載していま す。皮相電力(単位:VA)や無効電力(単位:var)も有効電力と同じ大きさのレンジになりま す。単位をそれぞれVAまたはvarに置き換えてご覧ください。桁数については,「8.1 表示桁数を選択する」をご覧ください。

結線方式:1P2W

電流レンジ	*-**	電圧レンジ [Vpk]							
[Apk] 表示桁		30	60	120	200	300	600	1200	2000
0.1	5桁	3.0000 W	6.0000 W	12.000 W	20.000 W	30.000 W	60.000 W	120.00 W	200.00 W
	6桁	3.00000 W	6.00000 W	12.0000 W	20.0000 W	30.0000 W	60.0000 W	120.000 W	200.000 W
	5桁	6.0000 W	12.000 W	24.000 W	40.000 W	60.000 W	120.00 W	240.00 W	400.00 W
0.2	6桁	6.00000 W	12.0000 W	24.0000 W	40.0000 W	60.0000 W	120.000 W	240.000 W	400.000 W
0.4	5桁	12.000 W	24.000 W	48.000 W	80.000 W	120.00 W	240.00 W	480.00 W	800.00 W
0.4	6桁	12.0000 W	24.0000 W	48.0000 W	80.0000 W	120.000 W	240.000 W	480.000 W	800.000 W
4	5桁	30.000 W	60.000 W	120.00 W	200.00 W	300.00 W	600.00 W	1.2000 kW	2.0000 kW
1	6桁	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W	1.20000 kW	2.00000 kW
2	5桁	60.000 W	120.00 W	240.00 W	400.00 W	600.00 W	1.2000 kW	2.4000 kW	4.0000 kW
2	6桁	60.0000 W	120.000 W	240.000 W	400.000 W	600.000 W	1.20000 kW	2.40000 kW	4.00000 kW
4	5桁	120.00 W	240.00 W	480.00 W	800.00 W	1.2000 kW	2.4000 kW	4.8000 kW	8.0000 kW
4	6桁	120.000 W	240.000 W	480.000 W	800.000 W	1.20000 kW	2.40000 kW	4.80000 kW	8.00000 kW
10	5桁	300.00 W	600.00 W	1.2000 kW	2.0000 kW	3.0000 kW	6.0000 kW	12.000 kW	20.000 kW
10	6桁	300.000 W	600.000 W	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW
20	5桁	600.00 W	1.2000 kW	2.4000 kW	4.0000 kW	6.0000 kW	12.000 kW	24.000 kW	40.000 kW
20	6桁	600.000 W	1.20000 kW	2.40000 kW	4.00000 kW	6.00000 kW	12.0000 kW	24.0000 kW	40.0000 kW
40	5桁	1.2000 kW	2.4000 kW	4.8000 kW	8.0000 kW	12.000 kW	24.000 kW	48.000 kW	80.000 kW
40	6桁	1.20000 kW	2.40000 kW	4.80000 kW	8.00000 kW	12.0000 kW	24.0000 kW	48.0000 kW	80.0000 kW
100	5桁	3.0000 kW	6.0000 kW	12.000 kW	20.000 kW	30.000 kW	60.000 kW	120.00 kW	200.00 kW
100	6桁	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW	30.0000 kW	60.0000 kW	120.000 kW	200.000 kW

結線方式:1P3W, 3P3W, 3V3A

雷流レンジ	+- <i>V</i>	電圧レンジ [Vpk]							
[Apk]	表示桁致	30	60	120	200	300	600	1200	2000
	5桁	6.0000 W	12.000 W	24.000 W	40.000 W	60.000 W	120.00 W	240.00 W	400.00 W
0.1	6桁	6.00000 W	12.0000 W	24.0000 W	40.0000 W	60.0000 W	120.000 W	240.000 W	400.000 W
	5桁	12.000 W	24.000 W	48.000 W	80.000 W	120.00 W	240.00 W	480.00 W	800.00 W
0.2	6桁	12.0000 W	24.0000 W	48.0000 W	80.0000 W	120.000 W	240.000 W	480.000 W	800.000 W
0.4	5桁	24.000 W	48.000 W	96.000 W	160.00 W	240.00 W	480.00 W	960.00 W	1.6000 kW
0.4	6桁	24.0000 W	48.0000 W	96.0000 W	160.000 W	240.000 W	480.000 W	960.000 W	1.60000 kW
-	5桁	60.000 W	120.00 W	240.00 W	400.00 W	600.00 W	1.2000 kW	2.4000 kW	4.0000 kW
1	6桁	60.0000 W	120.000 W	240.000 W	400.000 W	600.000 W	1.20000 kW	2.40000 kW	4.00000 kW
0	5桁	120.00 W	240.00 W	480.00 W	800.00 W	1.2000 kW	2.4000 kW	4.8000 kW	8.0000 kW
2	6桁	120.000 W	240.000 W	480.000 W	800.000 W	1.20000 kW	2.40000 kW	4.80000 kW	8.00000 kW
4	5桁	240.00 W	480.00 W	960.00 W	160.00 W	2.4000 kW	4.8000 kW	9.6000 kW	16.000 kW
4	6桁	240.000 W	480.000 W	960.000 W	160.000 W	2.40000 kW	4.80000 kW	9.60000 kW	16.0000 kW
10	5桁	600.00 W	1.2000 kW	2.4000 kW	4.0000 kW	6.0000 kW	12.000 kW	24.000 kW	40.000 kW
10	6桁	600.000 W	1.20000 kW	2.40000 kW	4.00000 kW	6.00000 kW	12.0000 kW	24.0000 kW	40.0000 kW
20	5桁	1.2000 kW	2.4000 kW	4.8000 kW	8.0000 kW	12.000 kW	24.000 kW	48.000 kW	80.000 kW
20	6桁	1.20000 kW	2.40000 kW	4.80000 kW	8.00000 kW	12.0000 kW	24.0000 kW	48.0000 kW	80.0000 kW
40	5桁	2.4000 kW	4.8000 kW	9.6000 kW	16.000 kW	24.000 kW	48.000 kW	96.000 kW	160.00 kW
40	6桁	2.40000 kW	4.80000 kW	9.60000 kW	16.0000 kW	24.0000 kW	48.0000 kW	96.0000 kW	160.000 kW
100	5桁	6.0000 kW	12.000 kW	24.000 kW	40.000 kW	60.000 kW	120.00 kW	240.00 kW	400.00 kW
100	6桁	6.00000 kW	12.0000 kW	24.0000 kW	40.0000 kW	60.0000 kW	120.000 kW	240.000 kW	400.000 kW

5.3 直接入力のときの測定レンジを設定する

結線方式:3P4W									
雷流レンジ	電圧レンジ [Vpk]								
[Apk]	衣不竹奴	30	60	120	200	300	600	1200	2000
	5桁	9.0000 W	18.000 W	36.000 W	60.000 W	90.000 W	180.00 W	360.00 W	600.00 W
0.1	6桁	9.00000 W	18.0000 W	36.0000 W	60.0000 W	90.0000 W	180.000 W	360.000 W	600.000 W
	5桁	18.000 W	36.000 W	72.000 W	120.00 W	180.00 W	360.00 W	720.00 W	1.2000 kW
0.2	6桁	18.0000 W	36.0000 W	72.0000 W	120.000 W	180.000 W	360.000 W	720.000 W	1.20000 kW
0.4	5桁	36.000 W	72.000 W	144.00 W	240.00 W	360.00 W	720.00 W	1.4400 kW	2.4000 kW
0.4	6桁	36.0000 W	72.0000 W	144.000 W	240.000 W	360.000 W	720.000 W	1.44000 kW	2.40000 kW
4	5桁	90.000 W	180.00 W	360.00 W	600.00 W	900.00 W	1.8000 kW	3.6000 kW	6.0000 kW
I	6桁	90.0000 W	180.000 W	360.000 W	600.000 W	900.000 W	1.80000 kW	3.60000 kW	6.00000 kW
0	5桁	180.00 W	360.00 W	720.00 W	1200.0 W	1.8000 kW	3.6000 kW	7.2000 kW	12.000 kW
2	6桁	180.000 W	360.000 W	720.000 W	1200.00 W	1.80000 kW	3.60000 kW	7.20000 kW	12.0000 kW
4	5桁	360.00 W	720.00 W	1.4400 kW	2.4000 kW	3.6000 kW	7.2000 kW	14.400 kW	24.000 kW
4	6桁	360.000 W	720.000 W	1.44000 kW	2.40000 kW	3.60000 kW	7.20000 kW	14.4000 kW	24.0000 kW
10	5桁	900.00 W	1.8000 kW	3.6000 kW	6.0000 kW	9.0000 kW	18.000 kW	36.000 kW	60.000 kW
10	6桁	900.000 W	1.80000 kW	3.60000 kW	6.00000 kW	9.00000 kW	18.0000 kW	36.0000 kW	60.0000 kW
20	5桁	1.8000 kW	3.6000 kW	7.2000 kW	12.000 kW	18.000 kW	36.000 kW	72.000 kW	120.00 kW
20	6桁	1.80000 kW	3.60000 kW	7.20000 kW	12.0000 kW	18.0000 kW	36.0000 kW	72.0000 kW	120.000 kW
40	5桁	3.6000 kW	7.2000 kW	14.400 kW	24.000 kW	36.000 kW	72.000 kW	144.00 kW	240.00 kW
	6桁	3.60000 kW	7.20000 kW	14.4000 kW	24.0000 kW	36.0000 kW	72.0000 kW	144.000 kW	240.000 kW
100	5桁	9.0000 kW	18.000 kW	36.000 kW	60.000 kW	90.000 kW	180.00 kW	360.00 kW	600.00 kW
100	6桁	9.00000 kW	18.0000 kW	36.0000 kW	60.0000 kW	90.0000 kW	180.000 kW	360.000 kW	600.000 kW

5.4 外部の電流センサを使用するときの測定レンジを設 定する

操作キー

《機能説明は1.3節》

作 操

全画面メニューでエレメントごとに設定する

- 電力測定モジュールの測定レンジをエレメントごとに設定します。
 - INPUTキーを押します。Input設定メニューが表示されます。 ファームウエアバージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示されます。
 - 2. [Power Module (Each)]のソフトキーを押します。パワーモジュール設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また,センサ 入力モジュールがエレメント番号4のスロットに装着されているときは,エレメント4の メニューは表示されません。

- 電流センサ入力コネクタを選択する
 - 3. ジョグシャトルを回して,設定しようとするエレメントの[Terminal]を選択します。
 - 4. SELECTキーを押して, [Sen]を選択します。
- 電流センサレンジを選択する
 - 5. ジョグシャトルを回して,設定しようとするエレメントの[I Range]を選択しま す。
 - 6. SELECTキーを押します。電流センサレンジ選択ボックスが表示されます。
 - 7. ジョグシャトルを回して, [1000mVpk]~[100mVpk], [Auto]のどれかを選択し ます。
 - 8. SELECTキーを押して、電流センサレンジを確定します。

	7	
Input ◀ Power Module (Each)		
↓ Power Module (All)		U Range Termina
		I Range Sensor Ratio(M
		Fil Zero Cr Fil
		Scaling Pt Ratio
		Scaling Fac

Power Module							
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)			
U Range	_2000Vpk	_2000Vpk	2000Vpk	_2000Vpk			
Term i na 1	_5A_Sen 20A_	+Select	5A Sen_20A	5A Sen_20A			
I Range Sensor	_1000mUpk_	1000mUpk	_10Apk	10Apk			
Ratio(mV/A	0.0000	400mUpk	0.0000	0.0000			
Filter	OFF	200mUpk	OFF	OFF			
Filter	OFF	100mUpk	OFF	OFF			
Scaling	DFF ON	Auto	OFF ON	DFF ON			
Pt Ratio	0.0000	ļ	0.0000	0.0000			
Ct Ratio	0.0000	0.0000	0.0000	0.0000			
Factor	0.0000	0.0000	0.0000	0.0000			

● 電流センサ換算比を設定する

- 9. ジョグシャトルを回して,設定しようとするエレメントの[Sensor Ratio(mV/A)] を選択します。
- 10. SELECTキーを押します。電流センサ換算比設定ボックスが表示されます。
- ジョグシャトルを回して、換算比を設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧くたさい。
- 12. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

		_Power Module		
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Vpk	_2000Upk	_2000Vpk	_2000Vpk_
Term i na l	_5A_Sen 20A_	_5A Sen_20A	5A Sen_20A	5A Sen_20A
I Range Sensor Ratio(mil/0	000mUpk	10Apk	10Apk	10Apk
Line Filter	0FF	OFF	OFF	0FF
Filter	OFF	OFF	OFF	OFF
Scaling	DFFON	_DFFON	DFF ON	DFFON_
Pt Ratio	0.0000	0.0000	0.0000	0.0000
Ct Ratio	0.0000	0.0000	0.0000	0.0000
Factor	0.0000	0.0000	0.0000	0.0000

全画面メニューで一括設定する

電力測定モジュールの測定レンジを、一括して設定します。ファームウエアバージョン 2.01以降の製品(PZ4000)に適用できます。

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Power Module (All)]のソフトキーを押します。パワーモジュールAll設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また、センサ 入力モジュールがエレメント番号4のスロットに装着されているときは、エレメント4の メニューは表示されません。

● 電流センサ入力コネクタを選択する

- 3. ジョグシャトルを回して、エレメント1の[Terminal]を選択します。
- 4. SELECTキーを押して, [Sen]を選択します。表示されている他のモジュールの [Terminal]も[Sen]に設定されます。

● 電流センサレンジを選択する

- 5. ジョグシャトルを回して、エレメント1の[I Range]を選択します。
- 6. SELECTキーを押します。電流センサレンジ選択ボックスが表示されます。
- 7. ジョグシャトルを回して, [1000mVpk]~[100mVpk], [Auto]のどれかを選択し ます。
- SELECTキーを押して、電流センサレンジを確定します。エレメント1と同じ電流 入力端子[Terminal]に設定されている他のモジュールの[I Range]も同じ電流レン ジになります。

F		P	Der noaute HI	I	
		Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
	U Range	_2000Vpk	_2000Vpk	_2000Vpk	_2000Vpk
	Terminal	_5ASen _	•Select	5A_Sen	_5ASen_
	I Range	_1000nVpk_	1000mVpk	_1000mVpk	_1000mVpk_
	Ratio(mV/A) 10.0000	400nVpk	10.0000	10.0000
	Filter	OFF	200nVpk	OFF	OFF
	Filter	OFF	100nVpk	OFF	OFF
	Scaling	_DFFON	Auto	DFF ON	DFF ON
	Pt Ratio	1.0000	ļ	1.0000	1.0000
	Ct Ratio	1.0000	1.0000	1.0000	1.0000
	Factor	1.0000	1.0000	1.0000	1.0000

● 電流センサ換算比を設定する

- 9. ジョグシャトルを回して、エレメント1の[Sensor Ratio(mV/A)]を選択します。
- 10. SELECTキーを押します。電流センサ換算比設定ボックスが表示されます。
- 11. ジョグシャトルを回して、換算比を設定します。
 - ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧く ださい。
- 12. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。表示されてい る他のモジュールの[Sensor Ratio(mV/A)]も同じ換算比に設定されます。

	Po	ower Module Al	u	
	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range	_2000Vpk	2000Upk	_2000Vpk	2000Vpk
Termína 1	_5A_Sen _	_5A_Sen 20A_	_5ASen	_5ASen
I Range Sensor Ratio(mU/A Line Filter Zero Cross		1000mUpk_ 000 0.0000 OFF	1000mUpk 10.00000_ 0FF	1000mUpk
Filter Scaling			OFFON	UFFON
Ct Ratio Scaling	1.0000	1.0000	1.0000	1.000

チャネル設定メニューで設定する

- 1. CH2, CH4, CH6, CH8キーから, 設定しようとするチャネルキーを押します。 チャネル設定メニューが表示されます。
 - モータモジュールがエレメント番号4のスロットに装着されているときにCH8キーを押 すと,トルク信号入力用のメニューが表示されます。設定操作については15章をご覧く ださい。

● 電流センサ入力コネクタを選択する

2. [Terminal]のソフトキーを押して, [Sen]を選択します。

● 電流センサレンジを選択する

- 3. [Sensor Range]のソフトキーを押します。電流センサレンジ選択ボックスが表示されます。
- 4. ジョグシャトルを回して, [1000mVpk]~[100mVpk], [Auto]のどれかを選択します。
- 5. SELECTキーを押して,電流センサレンジを確定します。

● 電流センサ換算比を設定する

- 6. [Sensor Ratio(mV/A)]のソフトキーを押します。
- ジョグシャトルを回して、換算比を設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- CHZ

 Wave Display

 IPF

 ON

 Terminal

 5a

 Semicor

 Ratio(rU/A)

 • Semsor

 Ratio(rU/A)

 • Oeoloo

 • U Zoon

 x0.1

シャントやクランプなどの電流センサの出力を、入力モジュールの電流センサ(current sensor)用コネクタに入力して測定できます。

● 電流センサ入力コネクタの選択

電流センサ入力コネクタの入力信号で電流を測定するには、[Terminal]の選択で、 [Sen]を選択してから、電流センサレンジや電流センサ換算比の設定をする必要があり ます。

● 電流センサレンジの選択

固定レンジとオートレンジの2種類があります。

・固定レンジ

1000mVpk, 400mVpk, 200mVpk, 100mVpkの中から選択できます。

・オートレンジ

レンジ設定で[Auto]を選択するとオートレンジになります。入力信号の大きさに よって、自動的にレンジが切り替わります。切り替わる条件や注意事項は、「5.3 直接入力のときの測定レンジを設定する」と同じです。切り替わるレンジの種類 は、上記の固定レンジと同じです。

● 電流センサ換算比の設定

0.0001~99999.999の範囲で設定できます。

● 電流センサレンジと換算比の設定例

1A通電時に10mVが出力される電流センサを使用して,最大100Apkの電流を測定する 場合は,10mV/A×100Apk=1000mVpkになります。したがって, 電流センサレンジには,1000mVpk, 電流センサ換算比には,10mV/A を設定します。

- Note _
 - 外部の電流センサの出力に換算比を掛けて、測定回路の電流を直読しようとしている場合、外部のPT/CTのスケーリング機能(5.5節参照)をOFFにしてください。ONになっているとCT比が さらに掛けられます。

5.5 外部のPT/CTを使用するときのスケーリング機能を 設定する

操作キー

《機能説明は1.3節》

操作

エレメントごとに設定する

- 電力測定モジュールのスケーリング機能をエレメントごとに設定します。
 - INPUTキーを押します。Input設定メニューが表示されます。 ファームウエアバージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示されます。
 - 2. [Power Module (Each)]のソフトキーを押します。パワーモジュール設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また,センサ 入力モジュールがエレメント番号4のスロットに装着されているときは,エレメント4の メニューは表示されません。

● スケーリング機能を動作させる(ON)/させない(OFF)を選択する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[Scaling]を選択します。
- 4. SELECTキーを押して、[ON]または[OFF]のどちらかを選択します。

● PT比を設定する

- 3. ジョグシャトルを回して、設定しようとするエレメントの[PT Ratio]を選択します。
- 4. SELECTキーを押します。PT比設定ボックスが表示されます。
- 5. ジョグシャトルを回して、PT比を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

Input	
Power Module (Each)	
● Power Module (All)	

	Power Module All
	Element 1 Element 2 Element 3 Element 4 (Standard) (20A Shunt) (Standard) (Standard)
U Range	_2000Upk2000Upk2000Upk2000Upk
Termína 1	5A Ben 5A Ben 20A 5A Ben 5A Ben
I Range Sensor Ratio(mV/A	
Line Filter Zero Cross Filter	OFFOFFOFFOFFOFFOFF
Sca1 ing	
Pt Ratio	1.0000 1.0000 1.0000 1.0000
Ct Ratio Scaling	1.0000 1.0000 1.0000 1.0000
Factor	1.0000 1.0000 1.0000 1.0000

● CT比を設定する

- 3. ジョグシャトルを回して、設定しようとするエレメントの[CT Ratio]を選択します。
- 4. SELECTキーを押します。CT比設定ボックスが表示されます。
- 5. ジョグシャトルを回して、CT比を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

Power Module							
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)			
U Range	2000Upk	2000Upk	_2000Vpk	2000Vpk			
Termina 1	_5A_Sen 20A_	5A Sen_20A	5A Sen_20A	5A Sen_20A			
I Range Sensor	1000nVpk	10Apk	10Apk	10Apk			
Ratio(mV/A	0.0000	0.0000	0.0000	0.0000			
Line Filter Zero Cross	OFF	OFF	OFF	OFF			
Filter	OFF	OFF	OFF	OFF			
Scaling	_DFFON	DFFON	DFF ON	DFF ON			
Pt Ratio	0.0000	0.0000	0.0000	0.0000			
Ct Ratio Scaling	- <u>0.00</u>	0000.0000	0.0000	0.0000			
Factor	0.0000	0.0000	0.0000	0.0000			

● 電力係数を設定する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[Scaling Factor]を選択します。
- 4. SELECTキーを押します。電力係数設定ボックスが表示されます。
- 5. ジョグシャトルを回して、電力係数を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

		_Power Module		
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Upk	_2000Upk	_2000Vpk	_2000Vpk
Ter n í na 1	_5A_Sen 20A_	5A Sen_20A	5A Sen_20A	5A Sen_20A
I Range Sensor	_1000nVpk_	10Apk	10Apk	10Apk
Ratio(mV/A	0.0000	0.0000	0.0000	0.0000
Filter Zero Cross	OFF	OFF	OFF	OFF
Filter	OFF	OFF	OFF	OFF
Scaling 544	_DFFON	_DFFON	DFFON	DFFON
Pt Ratio	0.0000	0.0000	0.0000	0.0000
Ct Ratio	0.0000	0.0000	0.0000	0.0000
Factor	- 0 .00	0000.0000	0.0000	0.0000

一括設定する

電力測定モジュールのスケーリング機能を、一括して設定します。ファームウエアバー ジョン2.01以降の製品(PZ4000)に適用できます。

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Power Module (All)]のソフトキーを押します。パワーモジュールAll設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また、センサ 入力モジュールがエレメント番号4のスロットに装着されているときは、エレメント4の メニューは表示されません。

- スケーリング機能を動作させる(ON)/させない(OFF)を選択する
 - 3. ジョグシャトルを回して、エレメント1の[Scaling]を選択します。
 - 4. SELECTキーを押して, [ON]または[OFF]のどちらかを選択します。表示されて いる他のモジュールの[Scaling]も同じ[ON]または[OFF]に設定されます。

● PT比を設定する

- 3. ジョグシャトルを回して、エレメント1の[PT Ratio]を選択します。
- 4. SELECTキーを押します。PT比設定ボックスが表示されます。
- 5. ジョグシャトルを回して、PT比を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。表示されてい る他のモジュールの[PT Ratio]も同じPT比に設定されます。

	Po	ower Module Al	11	
	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range	_2000Upk	_2000Upk	2000Vpk	_2000Vpk
Termina 1	_5ASen _	_5A_Sen 20A_	_5ASen	_5ASen
I Range Sensor Ratio(mU/A) Line	1000mUpk)10.0000_	1000mUpk 10.0000_	1000mUpk 10.0000_	1000mUpk 10.0000_
Filter Zero Cross	OFF	OFF	OFF	0FF
Filter	OFF	OFF	OFF	0FF
Scaling 5 1 1		_DFFON	_DFFON	_DFFON
Pt Ratio	- 1.00	000 1.0000	1.0000	_ 1.0000_
Ct Ratio Scaling	1.0000	1.0000	1.0000	1.0000
Factor	1.0000	1.0000	1.0000	1.0000

● CT比を設定する

- 3. ジョグシャトルを回して、エレメント1の[CT Ratio]を選択します。
- 4. SELECTキーを押します。CT比設定ボックスが表示されます。
- 5. ジョグシャトルを回して, CT比を設定します。
 - ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。表示されてい る他のモジュールの[CT Ratio]も同じCT比に設定されます。

	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element (Standar
U Range	2000Upk	2000Vpk	_2000Vpk	2000Vpk
Terminal	_5ASen _	_5A_Sen 20A_	_5ASen _	5ASe
I Range Sensor	_1000nVpk_	1000mVpk	_1000mVpk_	_1000mVp1
Ratio(mV/A) 10.0000	10.0000	10.0000	10.000
Filter Zero Cross	OFF	OFF	OFF	OFF
Filter	0FF	OFF	OFF	0FF
Scaling	_DFFON	DFFON	_DFFON	DFFO
Pt Ratio	1.0000	1.0000	1.0000	1.000
Ct Ratio	1.00	000 1.0000	1.0000	1.000
Factor	1.0000	1.0000	1.0000	1.00

● 電力係数を設定する

- 3. ジョグシャトルを回して、エレメント1の[Scaling Factor]を選択します。
- 4. SELECTキーを押します。電力係数設定ボックスが表示されます。
- 5. ジョグシャトルを回して、電力係数を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。表示されてい る他のモジュールの[Scaling Factor]も同じ電力係数に設定されます。

	P	ower Module Al	u <u></u>	
	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range	_2000Vpk	_2000Upk	_2000Vpk	_2000Vpk
Termína 1	_5ASen _	_5A_Sen 20A_	_5ASen _	_5ASen _
I Range Sensor	_1000nVpk_	_1000nVpk_	_1000mVpk_	_1000mVpk_
Ratio(mV/A)	10.0000	10.0000	10.0000	10.0000
Filter	OFF	OFF	OFF	OFF
Filter	OFF	OFF	OFF	OFF
Sca1ing	DFF ON	_DFFON	DFF ON	DFF ON
Pt Ratio	1.0000	1.0000	1.0000	1.0000
Ct Ratio	1.0000	1.0000	1.0000	1.0000
Factor	1.0	000 1.0000	1.0000	1.0000

解 説

PTの2次側の出力を直接入力するときと同じ電圧入力端子に入力し、CTの2次側の出力を 直接入力するときと同じ電流入力端子に入力して測定できます。

● スケーリング機能のON/OFF

設定されたPT比, CT比, 電力係数を, 電圧U, 電流I, 電力(P, S, Q)に掛けるか掛けないかの選択ができます。

- · ON: PT比, CT比, 電力係数を電圧U, 電流I, 電力(P, S, Q)に掛けます。
- · OFF: PT比, CT比, 電力係数を電圧U, 電流I, 電力(P, S, Q)に掛けません。外部のPTやCTの出力値をそのまま数値データとして求めていることになります。
- PT比の設定

0.0001~99999.999の範囲で設定できます。

● CT比の設定

0.0001~99999.9999の範囲で設定できます。

● 電力係数の設定

0.0001~99999.999の範囲で設定できます。

Note _

- ・ PT比, CT比, 電力係数を測定レンジに掛けた結果が, 99999Mを超えると, 数値データの表示枠に[-OF-]が表示されます。
- ・後述の波形演算(11.2節参照)で、電圧と電流の積を演算するとき(C1*C2のような場合)は、電力係数を掛けません。
- ・ 設定したPT比, CT比, 電力係数は, データの取り込みをスタートしているとき, または数値 演算を実行したときに反映されます。

5.6 入力フィルタを選択する

操作キー

《機能説明は1.3節》

エレメントごとに選択する

- 電力測定モジュールの入力フィルタをエレメントごとに選択します。
 - INPUTキーを押します。Input設定メニューが表示されます。 ファームウエアバージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示されます。
 - 2. [Power Module (Each)]のソフトキーを押します。パワーモジュール設定ダイア ログボックスが表示されます。

モジュールが装着されていないエレメントのメニューは表示されません。また,センサ 入力モジュールがエレメント番号4のスロットに装着されているときは,エレメント4の メニューは表示されません。

● ラインフィルタを選択する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[Line Filter]を選択します。
- 4. SELECTキーを押します。ラインフィルタ選択ボックスが表示されます。
- 5. ジョグシャトルを回して、[OFF]~[1MHz]のどれかを選択します。
- 6. SELECTキーを押して、ラインフィルタを確定します。フロントパネルの ELEMENTグループにあるFILTERのインジケータが点灯します。

● ゼロクロスフィルタを選択する

- 3. ジョグシャトルを回して,設定しようとするエレメントの[Zero Cross Filter]を 選択します。
- 4. SELECTキーを押します。ゼロクロスフィルタ選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [OFF]~[20kHz]のどれかを選択します。
- 6. SELECTキーを押して,ゼロクロスフィルタを確定します。

5.6 入力フィルタを選択する

	7
Input • • • Power Module (Each)	
Power Module (All)	
	ĮĽ

Power Module				
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Vpk	2000Upk	_2000Upk	_2000Vpk
Ter n í na l	_5A_Sen 20A_	5A Sen_20A	5A Sen_20A	5A Sen_20A
I Range Sensor	_1000nVpk_	10Apk	10Apk	10Apk
Ratio(mV/A Line	0.0000	0.0000	0.0000_	0.0000_
Filter	OFF	+Select	1	OFF
Filter	OFF	DFF	OFF	OFF
Sca1ing	_DFFON	500Hz	DFFON	DFF ON
Pt Ratio	0.0000	20kHz	0.0000	0.0000
Ct Ratio	0.0000	1MHz	0.0000	0.0000
Factor	0.0000	l	0.0000	0.0000

	Power Module			
	Element 1 (20A Shunt)	Element 2 (20A Shunt)	Element 3 (20A Shunt)	Element 4 (20A Shunt)
U Range	_2000Upk	2000Vpk	_2000Upk	2000Vpk
Termina 1	_5A_Sen 20A_	_5A Sen_20A	_5A Sen_20A	5A Sen_20A
I Range Sensor	1000nUpk	10Apk	10Apk	10Apk
Ratio(mV/A Line	0.0000	0.0000	0.0000	0.0000
Filter Zero Cross	OFF	OFF	OFF	OFF
Filter	OFF	•Select	1 <u></u>	OFF
Scaling	_DFFON	DFF	OFFON	_DFFON
Pt Ratio	0.0000	500Hz	0.0000	0.0000
Ct Ratio Scaling	0.0000	20kHz	0.0000	0.0000
Factor	0.0000	ļ	0.0000	0.0000

一括選択する

電力測定モジュールの入力フィルタを、一括して選択します。ファームウエアバージョン 2.01以降の製品(PZ4000)に適用できます。

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- [Power Module (All)]のソフトキーを押します。パワーモジュールAll設定ダイア ログボックスが表示されます。
 モジュールが装着されていないエレメントのメニューは表示されません。また、センサ

モジュールが装着されていないエレメントのメニューは表示されません。また、センサ 入力モジュールがエレメント番号4のスロットに装着されているときは、エレメント4の メニューは表示されません。

● ラインフィルタを選択する

- 3. ジョグシャトルを回して、エレメント1の[Line Filter]を選択します。
- 4. SELECTキーを押します。ラインフィルタ選択ボックスが表示されます。
- 5. ジョグシャトルを回して、[OFF]~[1MHz]のどれかを選択します。
- 6. SELECTキーを押して、ラインフィルタを確定します。表示されている他のモ ジュールの[Line Filter]も同じラインフィルタに設定されます。フロントパネルの ELEMENTグループにあるFILTERのインジケータが点灯します。

● ゼロクロスフィルタを選択する

- 3. ジョグシャトルを回して、エレメント1の[Zero Cross Filter]を選択します。
- 4. SELECTキーを押します。ゼロクロスフィルタ選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [OFF]~[20kHz]のどれかを選択します。
- 6. SELECTキーを押して、ゼロクロスフィルタを確定します。表示されている他の モジュールの[Zero Cross Filter]も同じゼロクロスフィルタに設定されます。

	10
Input	$\ $
↓ Power Hodule (Each)	
♥ Power Module (All)	

	Pc	wer Module Al	.1	
	Element 1 (Standard)	Element 2 (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range	_2000Vpk	_2000Vpk	_2000Vpk	_2000Vpk
Termina 1	_5ASen	_5A_Sen 20A_	_5ASen _	_5ASen _
I Range	_1000nVpk_	1000mVpk	_1000mVpk_	_1000mUpk_
Ratio(mV/A)	10.0000	10.0000	10.0000	10.0000
Filter Zero Cross	OFF	+Select		OFF
Filter	OFF	DFF	OFF	OFF
Sca1ing	_DFFON	500Hz	DFFON	DFF ON
Pt Ratio	1.0000	20kHz	1.0000	1.0000
Ct Ratio	1.0000_	1MHz	1.0000	1.0000
Scaling Factor	1.0000_		1.0000	1.0000_

	Power Module A	11	
Element (Standar	1 Element 2 d) (20A Shunt)	Element 3 (Standard)	Element 4 (Standard)
U Range2000Vpl	2000Vpk	_2000Vpk	_2000Vpk
Terminal <u>5A</u> Se	n _ 56_Sen 206_	_5ASen	_5ASen _
I Range1000mVp Sensor	k1000mVpk	_1000nUpk_	_1000mVpk_
Ratio(mV/A) 10.00	00 10.0000	10.0000	10.0000_
Filter OFF Zero Cross	OFF	OFF	OFF
FilterOFF	+Select		OFF
ScalingC	N_ DFF	DFFON	_DFFON
Pt Ratio1.00	00 500Hz	1.0000	_ 1.0000_
Ct Ratio1.00	00] 20kHz	1.0000	_ 1.0000_
Factor 1.00	00	1.0000	_ 1.0000_

解 説

電力測定モジュールには、下記の2種類の入力フィルタがあります。モータモジュールの 入力フィルタの選択については、15.3節をご覧ください。

● ラインフィルタの選択

測定回路に挿入されます。インバータ波形やひずみ波形などのノイズを除去します。 カットオフ周波数を次の中から選択できます。OFFを選択すると、フィルタ機能は働き ません。

OFF, 500Hz, 20kHz, 1MHz

● ゼロクロスフィルタの選択

周波数測定回路だけに挿入されます。入力信号の振幅の中央値レベルを入力信号が横切 ることをゼロクロスといいます。このゼロクロスの点を、より精度よく検出するための フィルタです。本機器は、測定レンジの約3.5%のヒステリシスをもたせて、ゼロクロ スを検出しています。カットオフ周波数を次の中から選択できます。ゼロクロスフィル タがOFFのとき、上記のラインフィルタがONであれば、ラインフィルタで設定された カットオフ周波数がゼロクロスフィルタとして有効になります。 OFF、500Hz、20kHz 操作キー

6.1 観測時間を設定する

《機能説明は1.3節》

操作

● 通常測定モードのとき

OBSERVATION TIMEのロータリノブを回します。画面右上に設定した観測時間が表示されます。

● 高調波測定モードのとき PLLソースの基本周波数から求められるサンプルレートと、設定レコード長によって自動的に決まります。

解 説

観測時間は、1画面分の時間幅を表します。測定モードにより、観測時間の決まり方が異なります。

観測時間

サンプルレート 25kS/ Display____ Format

● 通常測定モードのとき

10µs~1ks^{*}(1-2-4ステップ)の範囲で設定できます。 観測時間の設定によってサンプルレートが変わり、そのサンプルレートでサンプリング データがアクイジションメモリに取り込まれます。観測時間/サンプルレート/レコード 長の詳細は、「付録1」をご覧ください。

*1ksは、1000秒(16分40秒)を示します。

● 高調波測定モードのとき

高調波測定モードの観測時間は、PLLソース(6.4節参照)の基本周波数から求められるサンプルレートと、設定レコード長(1.3節参照)によって自動的に決まります。観測時間の表示はされません。レコード長の分割(6.2節参照)をしていないときの観測時間は、次のようになります。

- · 設定レコード長が100kワードのとき:約0.5~1.6s
- · 設定レコード長が1Mワードのとき:約4.9~16.3s
- · 設定レコード長が4Mワードのとき:約19.5~65.1s

観測時間/サンプルレート/レコード長の詳細は、「付録1」をご覧ください。

Note _

 通常測定モードの場合、サンプリングデータの取り込みを停止しているときも、観測時間の変 更ができます。変更した観測時間は、データの取り込みをスタートしたときに有効になります。

表示データの観測時間 <u>100ms</u>5HS/s

- 変更した観測時間 <u>4s 25k3/s</u>________ 「Format
- タイムペース(6.3節参照)を外部クロックにすると、外部クロックのタイミングでデータをサン プリングし、設定レコード長分のデータを取り込みます。このときには観測時間の表示をしま せん。
- ・ 高調波測定モードの場合、サンプルレートがPLLソースという外部の信号(測定対象の信号または外部クロックの信号)に依存するため、通常測定モードと違い、観測時間を一律に設定できません。高調波測定モードでは、設定レコード長分のサンプリングデータをアクイジションメモリに取り込む時間が1画面分の時間になります。

6.2 データを取り込むレコード長を選択する

操作キー

《機能説明は1.3節》

操作

1. SHIFT+TRIGGER(ACQ)キーを押します。Acq設定メニューが表示されます。

● レコード長を選択する

オプションで、メモリが拡張されている場合に、設定レコード長の選択ができます。

- 2. [Record Length]のソフトキーを押します。設定レコード長選択メニューが表示 されます。
- 3. [100k]~[4M]のどれかのソフトキーを押して,設定レコード長を選択します。

● レコード長を分割する(ON)/しない(OFF)を選択する

2. [Rec Division]のソフトキーを押して, [ON]または[OFF]のどちらかを選択しま す。

	-
Record	
1M	
4M	

● レコード長の選択

1チャネル当たりのアクイジションメモリのデータ容量を設定レコード長といい,次の 中から選択できます。1Mと4Mは,メモリ拡張のオプションです。 100k, 1M, 4M

アクイジションメモリに取り込まれたサンプリングデータが、P-P圧縮され画面に表示 されます。画面に表示されるサンプリングデータの点数を表示レコード長といいます。 数値データは、この表示レコード長のサンプリングデータを元に求められます。観測時 間/サンプルレート/レコード長の詳細は、「付録1」をご覧ください。

通常測定モードの場合,表示レコード長の大きさは,観測時間の設定によって変わり, 最大で設定レコード長と同じになります。観測時間が長いときは,設定レコード長と表 示レコード長は同じですが,観測時間が短いときは,表示レコード長が設定レコード長 より短くなります。

タイムベースが外部クロックの場合,または高調波測定モードの場合,表示レコード 長と設定レコード長は,常に同じです。

Note _

タイムペース(6.3節参照)を外部クロックにすると、外部クロックのタイミングでデータをサン プリングし、設定レコード長分のデータを取り込みます。

● レコード長の分割

- アクイジションメモリを半分に分割するかしないかの選択ができます。
- · ON:メモリを分割し、見かけ上メモリが2つあるように、片方ずつサンプリング データを取り込むことができます。片側のメモリのレコード長は半分になります。
- ・OFF:メモリを分割しません。

6.3 タイムベースを選択する

操作キー

《機能説明は1.3節》

操作

- 1. SHIFT+TRIGGER(ACQ)キーを押します。Acq設定メニューが表示されます。
- 2. [Time Base]のソフトキーを押して, [Int]または[Ext]のどちらかを選択します。

-	~
ACII 1	
 Record Length 	
100k	
Rec Division	
DFF ON	
Time Base	
int Ext	

解 説

本機器の初期設定では、データのサンプリングのタイミングは、本機器内部のタイムベース回路から出力されるクロック信号によってコントロールされます。これを外部から入力 するクロック信号でコントロールすることができます。

● タイムベースの選択

タイムベースを次の中から選択できます。

- Int:内部クロック信号が、タイムペースになります。6.1節で設定された観測時間が、有効になります。
- ・Ext:外部クロック入力コネクタに入力されたクロック信号が、タイムベースになります。6.1節で設定された観測時間は、無効になります。

● タイムベースを[Ext]にするとき

リアパネルの外部クロック入力コネクタ(EXT CLK IN)に,次の仕様に従って,クロック信号を入力してください。

🔘 \Lambda ext clk in

-		
項目	仕様	
コネクタ形式 周波数範囲 入力レベル 最小パルス幅	BNCコネクタ 1kHz〜250kHz CMOS High, Lowともに1µs	
-		

注 意

外部クロック入力コネクタ(EXT CLK IN)に0~5V以外の電圧を加えると、本機器を損傷する恐れがあります。

Note .

- 外部クロック信号は、連続クロックにする必要があります。バースト信号は使用できません。
 外部クロック信号を分周する機能はありません。
- 外部クロック信号を力向する成形はのりょしん。
- ・タイムベースを外部クロックにした場合,観測時間の変更ができません。時間軸方向の表示範 囲を変えたいときは、レコード長の設定を変えるか、時間軸方向のズームをしてください。
- ・タイムベースを外部クロックにした場合,カーソル測定で測定される時間測定は,クロック信 号のクロック数になります。単位は表示されません。
- ・ タイムベースを外部クロックにした場合、トリガディレイの設定は無効になります。
- ・タイムペースを外部クロックにした場合,波形演算(11.2節参照)のTINTG関数は、1サンプリングデータ1秒として演算します。
- 外部のクロック信号は、データサンプリングのタイミング以外の次のような用途にも使用します。
 - · PLLソース(6.4節参照)
 - 測定/演算区間の設定(10.1節参照)
- 高次の高調波をより正確に測定しようとする場合、入力信号の基本周波数に対して整数倍の周 波数を持つクロック信号で、入力信号をサンプリングする必要があります。本機器は、PLL ソースに選択された入力信号からクロック信号を生成し、入力信号をサンプリングしていま す。タイムベースを外部クロックにして、入力信号の基本周波数に対して4096倍の周波数を もつクロック信号を外部クロック入力コネクタに入力することによって、高次の高調波をより 精度よく測定できます。
- タイムペースを外部クロックにしてサンプリングデータの取り込みをしているとき、仕様外の 周波数のクロックを入力したり無入力状態にしておくと、サンプリングデータの取り込みが正 常に動作しないことがあります。アクイジションメモリを2分割して取り込んだ1回前の正常な サンプリングデータも壊れることがあります。

6.4 高調波測定時のPLLソースを選択する

《機能説明は1.2節》

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. [Pll Source]のソフトキーを押します。PLLソース選択ボックスが表示されます。
- 3. ジョグシャトルを回して, [CH1]~[Ext Clk]のどれかを選択します。
- 4. SELECTキーを押して、PLLソースを確定します。

		<i></i>
	Setup Mode Harmonics	
Select-		
CH1		
CHZ		
СНЗ	∢ Wiring	
CH4	1P2W-1P2W	
CH5	Display Provident	
СНБ	5dgts 6dgts	
CH7	 P11 Source 	
СНВ	CH1	
Ext Clk	Initialize	
		ر

解 説

高調波の次数を解析する基準になる基本周期を決定するためのPLL(phase locked loop) ソースを,選択できます。

● PLLソースの選択

PLLソースを、次の中から選択できます。

- CH1~CH8:モジュールが装着されているエレメントの電圧または電流が、PLL ソースになります。モジュールが装着されていないエレメントのチャネル番号は、 表示されません。
- Ext Clk:外部クロック入力コネクタに入力されたクロック信号が、PLLソースになります。

● PLLソースを[Ext Clk]にするとき

リアパネルの外部クロック入力コネクタ(EXT CLK IN)に,次の仕様に従って,クロック信号を入力してください。

 項目	仕様	
コネクタ形式 周波数範囲 入力レベル	BNCコネクタ 20Hz~6.4kHz CMOS	

外部クロック入力コネクタ(EXT CLK IN)に0~5V以外の電圧を加えると、本機器を損傷する恐れがあります。

Note.

- ・高調波測定をする対象波形と同周期の信号を設定してください。また、ひずみが少ない入力信号をPLLソースに選択したほうが、安定して高調波測定ができます。PLLソースの基本周波数が変動したり波形がひずんでいて基本周波数が測定できない場合、正しい測定結果を得られません。PLLソースを電流に比べてひずみが少ない電圧に設定することをおすすめします。すべての入力信号にひずみがあったり振幅レベルが測定レンジに対して小さい場合、仕様を満足できないことがあります。高次の高調波をより精度よく測定するためには、PLLソースを外部クロックにして、入力信号の周期と同じ周期の信号を外部クロック入力コネクタに入力してください。
- ・基本周波数が500Hz以下で高い周波数成分を含んでいるときには、ゼロクロスフィルタを [500Hz]にすることをおすすめします。このフィルタはカットオフ周波数500Hzで、周波数測 定回路にだけ有効です。
- ・PLLソースとして設定したCH1~CH8の信号の振幅レベルが、レンジに対して小さい場合、 PLL同期がかからないことがあります。PLLソースの振幅レベルがレンジの30%以上になるよ
 - うに,測定レンジを設定してください。
- ・ 外部クロック信号をPLLソースにするときは、測定対象信号の基本周波数と同じ周波数の外部 クロック信号を入力してください。
- ・ 測定対象信号の基本周波数に対して整数倍の周波数を持つ外部のクロック信号を入力して測定 することで、より正確な高調波測定ができます。
- 外部クロック信号は、連続クロックにする必要があります。バースト信号は使用できません。
- ・ 外部クロック信号を分周する機能はありません。
- ・ PLLソースを外部クロックにしてサンプリングデータの取り込みをしているとき, PLLソースの周波数が検出できなくなると, サンプリングデータの取り込みが正常に動作しないことがあります。

7.1 トリガモードを選択する

操作キー

《機能説明は1.4節》

・操作途中で,メニューから抜け出すときは, ESCキ ーを押します。

操作

- 1. TRIGGERキーを押します。Trigger設定メニューが表示されます。
- 2. [Mode]のソフトキーを押します。トリガモード選択メニューが表示されます。
- 3. [OFF]~[HF Normal]のどれかのソフトキーを押して,トリガモードを選択します。

(
Mode	
OFF	
Auto	
AT-Leve 1	
Norma 1	
HF Auto	
HF Norma1	
	<u> </u>

解説

画面表示の更新の条件設定が、トリガモードです。次の中から選択できます。

· OFF:オフモードになります。

トリガ条件の成立/不成立に関係なく、更新されます。このモードにすると、Trigger設 定メニューの他のメニューは表示されません。

- · Auto:オートモードになります。
 - · タイムアウト時間(約100ms)内にトリガがかかったとき、表示を更新します。
 - タイムアウト時間内にトリガがかからなかったときは、タイムアウト時間を経過したときに、表示を自動更新します。

トリガ信号の周期が100ms以上のときは、上記2つの条件が交互に成立し、表示が更新 されます。このようなときは、ノーマルモードにしてください。

· AT-Level: オートレベルモードになります。

- タイムアウト時間内にトリガがかかったときは、オートモードと同じ動作をします。
- タイムアウト時間内にトリガがかからなかったときは、トリガソースの振幅の中央 値を検出し、トリガレベルを自動的に中央値に変更してトリガ(エッジトリガ)をか け、表示を更新します。
- · Normal: ノーマルモードになります。
 - ・トリガがかかったときに、表示を更新します。
 - ・トリガがかからないときは、表示を更新しません。
- ・HF Auto:HFオートモードになります。
 - トリガソースのゼロクロス検出回路の出力を、トリガ条件の対象信号にします。トリガソースの振幅の中央値レベルをトリガソースが横切る点(測定レンジの約3.5%のヒステリシスあり)でトリガをかけ、表示を更新するため、トリガレベル(7.3節参照)の設定は無効です。
 - タイムアウト時間内にトリガがかかったとき、かからなかったときの動作は、オートモードと同じです。
 - ・ゼロクロスフィルタを設定すると、より高周波ノイズの影響を受けにくくなり、予期しないところでトリガがかかるのを防ぐことができます。
 - ・エレメント番号4のスロットにモータモジュールが装着されている場合,トリガソー スとしてCH7またはCH8が選択されていると,正しく動作しないことがあります。
- · HF Normal: HFノーマルモードになります。
 - トリガ条件の対象信号と、トリガレベルのしくみについては、HFオートモードと同じです。
 - ・トリガがかかったとき、かからないときの動作は、ノーマルモードと同じです。
 - エレメント番号4のスロットにモータモジュールが装着されている場合、トリガソー スとしてCH7またはCH8が選択されていると、正しく動作しないことがあります。

Note _

- · トリガモードが[AT-Level]のとき、トリガタイプはエッジトリガだけになります。
- ・トリガモードが[HF Auto], [HF Normal]のとき,トリガタイプはエッジトリガだけになりま す。また,トリガレベルの設定はできません。
7.2 トリガソースを選択する

《機能説明は1.4節》

ーを押します。

操作

操作キ-

オフモード以外のトリガモードにします。設定方法は、「7.1 トリガモードを選択する」をご覧ください。

- TRIGGERキーを押します。Trigger設定メニューが表示されます。[Mode]が、 [OFF]以外になっていることを確認します。
- 2. [Source]のソフトキーを押します。ソース選択ボックスが表示されます。
- 3. ジョグシャトルを回して, [CH1]~[Ext]のどれかを選択します。
- 4. SELECTキーを押して、ソースを確定します。

		~
	<u>Trigger</u> ◀ Mode Auto	
elect—	 Source 	
CH1	CH1	
CHZ	Туре	
СНЗ	Edge Window	
CH4	Slope	
CH5	કરત	
CH6	O Leve1	
CH7	0.0%	
CH8	O Position	
Ext	0%	
	🔿 Delay	
	0.0us	
		2

7

解 説

● トリガソースの選択

- 設定されたトリガ条件の対象(トリガソース)を,次の中から選択できます。
- CH1~CH8:モジュールが装着されているエレメントの電圧または電流が、トリガ ソースになります。モジュールが装着されていないエレメントのチャネル番号は、 表示されません。
- Ext:外部tトリガ入力コネクタに入力された信号が、トリガソースになります。トリガタイプはエッジトリガ(7.3節参照)だけが有効です。また、トリガレベル(7.3節参照)の設定は無効になります。

● トリガソースを[Ext]にするとき

リアパネルの外部トリガ入力コネクタ(EXT TRIG IN)に,次の仕様に従って,信号を入力してください。

項目	仕様
コネクタ形式	BNCコネクタ
入力レベル	CMOS
最小パルス幅	1µs
トリガ遅延時間	(2µs+1サンプル周期)以内

外部トリガ入力コネクタ(EXT TRIG IN)に0~5V以外の電圧を加えると、本機器 を損傷する恐れがあります。

● 外部トリガ入力の回路図とタイミングチャート

7.3 エッジトリガを設定する

《機能説明は1.4節》

操作

操作キー

オフモード以外のトリガモードにします。設定方法は、「7.1 トリガモードを選択する」をご覧ください。

- 1. TRIGGERキーを押します。Trigger設定メニューが表示されます。[Mode]が, [OFF]以外になっていることを確認します。
- トリガタイプを選択する
 - 2. [Type]のソフトキーを押して, [Edge]を選択し, トリガタイプをエッジトリガに します。
- トリガスロープを選択する
 - 3. [Slope]のソフトキーを押して, [J], [l], [l]のどれかを選択します。
- トリガレベルを設定する
 - 4. [Level]のソフトキーを押します。
 - 5. ジョグシャトルを回して、トリガレベルを設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。

● トリガタイプの選択

- トリガの種類を次の中から選択できます。ここでは, [Edge]を選択します。
- Edge:エッジトリガになります。トリガソースのスロープが、あらかじめ設定した
 トリガレベルに対して、立ち上がるか立ち下がると、トリガがかかります。
- Window:ウインドウトリガになります。ある一定のレベル幅(Width)を設定し、ト リガソースのレベルがその設定幅に入る(IN)、または設定幅から出る(OUT)のどちら かでトリガがかかります。ウインドウトリガについては、「7.4 ウインドウトリガ を設定する」をご覧ください。

● トリガスロープの選択

信号レベルの上下の動きをスロープといい、トリガ成立条件の1つの項目としたとき、 トリガスロープといいます。トリガスロープを次の中から選択できます。

- ・ **f**:トリガソースの信号が、トリガレベルより低いレベルからトリガレベルより高いレベルになった(立ち上がり)とき、トリガがかかります。
- ・ L:トリガソースの信号が、トリガレベルより高いレベルからトリガレベルより低いレベルになった(立ち下がり)とき、トリガがかかります。
- ・ ft: 立ち上がりまたは立ち下がりのどちらの場合も、トリガがかかります。

● トリガレベルの設定

トリガスロープの通過レベルや、トリガソースの状態を判定するレベルをトリガレベル といいます。トリガタイプが[Edge]のときは、トリガスロープの通過レベルを設定しま す。

0.0~±100.0%の範囲で設定できます。

波形表示画面の垂直軸方向の全幅の半分を100%としています。画面の垂直軸方向の中 心を入力ゼロラインとして,波形表示画面の上限が100%,下限が-100%です。波形 表示画面の上/下限は,各チャネルごとに設定されている電圧/電流の測定レンジ(ス ケーリングされているときは,スケーリング後のレンジ)に相当します。

・測定レンジ:300Vpk

Note _

- トリガモードが[OFF], [HF Auto]および[HF Normal]の場合,トリガレベルの設定は,無効です。また,トリガモードが[AT-Level]で,タイムアウト時間内にトリガがかからなかったときも,トリガレベルの設定は,無効です。
- · トリガソースが[Ext]の場合, トリガレベルの設定は, 無効です。
- ・ トリガモードが[HF Auto], [HF Normal]のとき, トリガレベルの設定はできません。

7

トリガの設定

7.4 ウインドウトリガを設定する

《機能説明は1.4節》

操作

操作キー

オフモード以外のトリガモードにします。設定方法は、「7.1 トリガモードを選択する」をご覧ください。

1. TRIGGERキーを押します。Trigger設定メニューが表示されます。[Mode]が, [OFF]以外になっていることを確認します。

● トリガタイプを選択する

- 2. [Type]のソフトキーを押して, [Window]を選択し, トリガタイプをウインドウトリガにします。
- トリガソースの状態を選択する
 - 3. [Condition]のソフトキーを押して, [In]または[Out]のどちらかを選択します。

● ウインドウを設定する

・ 中心レベルを設定する

- 4. [Center Level / Width Level]のソフトキーを押して、ジョグシャトルの対象を [Center Level]にします。
- 5. ジョグシャトルを回して、中心レベルを設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。

Trigger Hode Auto Source CH1	
Type Edge Window	
Condition In Out	
© Width Level 0.0% 0.0% 0.0%	
0%. ⊘ Detay	
0.005	رك

・ウインドウ幅を設定する

- [Center Level / Width Level]のソフトキーを押して、ジョグシャトルの対象を [Width Level]にします。
- ジョグシャトルを回して、ウインドウ幅を設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。

<u>Trigger</u> ◀ Hode Auto	
✓ Source CH1	
Type Edge Window	
m Out	
0.0% Width Level 0.0% 0.0%	
0%	
0.0us	

- トリガタイプの選択
 - トリガの種類を次の中から選択できます。ここでは, [Window]を選択します。
 - Edge:エッジトリガになります。トリガソースのスロープが、あらかじめ設定した
 トリガレベルに対して、立ち上がるか立ち下がると、トリガがかかります。エッジ
 トリガについては、「7.3 エッジトリガを設定する」をご覧ください。
 - ・Window:ウインドウトリガになります。ある一定のウインドウ幅(Width)を設定 し、トリガソースのレベルがそのウインドウ幅に入る(IN)、またはウインドウ幅から 出る(OUT)のどちらかでトリガがかかります。

● トリガソースの状態の選択

- トリガソースがどのような状態になったときにトリガをかけるかを,次の中から選択できます。
- In:トリガソースの信号が、設定したウインドウ幅に入ったとき、トリガかかります。
- Out:トリガソースの信号が、設定したウインドウ幅から出たとき、トリガかかります。

● ウインドウの設定

ウインドウは、中心レベル(Center Level)と、中心レベルに対するウインドウ幅(Width Level)で設定します。

・中心レベルの設定

0.0~±100.0%の範囲で設定できます。波形表示画面の垂直軸方向の全幅の半分を 100%としています。詳細は、7-7ページの「●トリガレベルの設定」をご覧ください。

・ウインドウ幅の設定

上記の中心レベルを基準に0.0~200.0%の範囲で設定できます。波形表示画面の垂 直軸方向の全幅の半分を100%としています。

- ・測定レンジ:300Vpk
- ・トリガソースの状態:In
- ・中心レベル:25% ・ウインドウ幅:100%
- のとき

Note _

- ・トリガモードが[OFF], [HF Auto]および[HF Normal]の場合,ウインドウトリガの設定は,無効です。また,トリガモードが[AT-Level]の場合,ウインドウトリガの設定はできません。
- ・ トリガソースが[Ext]の場合,ウインドウトリガの設定は,無効です。
- ・ ウインドウ幅の設定範囲が、画面の表示範囲を超えた場合は、画面の表示範囲までがウインド ウ幅になります。

7.5 トリガポジションを設定する

《機能説明は1.4節》

トリガモードが、オフモード以外のときに適用します。

ーを押します。

操作

操作キー

オフモード以外のトリガモードにします。設定方法は、「7.1 トリガモードを選択する」をご覧ください。

- TRIGGERキーを押します。Trigger設定メニューが表示されます。[Mode]が、 [OFF]以外になっていることを確認します。
- 2. [Position]のソフトキーを押します。
- ジョグシャトルを回して、トリガポジションを設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。

アクイジションメモリに取り込まれるサンプリングデータのうち、どの部分を波形表示す るかを、トリガポジションで設定します。

トリガポジションの設定

0~100%の範囲で設定できます。画面左端を0%,右端を100%としています。 次節のトリガディレイが0sのとき,トリガ点とトリガポジションは一致します。

Note

サンプリングデータの取り込みを停止しているときも、トリガポジションの変更ができます。
 変更したトリガポジションは、データの取り込みをスタートしたときに有効になります。
 観測時間の設定を変えると、トリガポジションを中心に表示範囲が変わります。

7.6 トリガディレイを設定する

《機能説明は1.4節》

ーを押します。

操作

操作キー

オフモード以外のトリガモードにします。設定方法は、「7.1 トリガモードを選択する」をご覧ください。

- 1. TRIGGERキーを押します。Trigger設定メニューが表示されます。[Mode]が, [OFF]以外になっていることを確認します。
- 2. [Delay]のソフトキーを押します。
- ジョグシャトルを回して、トリガディレイを設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。

解 説

トリガポジションは、トリガディレイがOsのときにトリガ点と一致します。トリガディレイの機能を使うと、トリガがかかってから所定の時間(遅延時間といいます)だけ遅れて取り込まれたデータを表示できます。

トリガディレイの設定

0.0~100000.0µs(分解能は0.5µs)の範囲で設定できます。

トリガディレイを設定したとき

Note _

観測時間を変えても、トリガディレイは保持されます。

8.1 表示桁数を選択する

操作キー

《機能説明は1.2節》

ーを押します。

操作

- 1. SETUPキーを押します。Setup設定メニューが表示されます。
- [Display Resolution]のソフトキーを押して、[5dgts]または[6dgts]のどちらか を選択します。

	T
Setup (Mode	
Norma 1	
♦ Wiring 1P2W-1P2W	
Display Resolution 5dgts 6dgts	
Initialize	

解 説

電圧/電流/有効電力/皮相電力/無効電力/力率などの最大表示桁数(最高表示分解能)を,選択できます。

- · 5dgts:表示分解能99999
- · 6dgts:表示分解能999999
- Note _

・実際に表示される桁数は、電圧レンジと電流レンジの組み合わせや自動の桁上がり動作によって、最大表示桁数よりも少ない場合があります。

・ 周波数,位相差(位相角),カーソル測定,pkの最高表示分解能は,表示桁数の選択にかかわら ず次のようになります。

- · 周波数:99999
- · 位相差(位相角):360.00
- ・ カーソル測定:99999
- pk : 99999

8.2 通常測定データを表示する

《機能説明は1.5節》

操作

操作キー

測定モードを通常測定モードにします。設定方法は、「5.1 測定モードを選択する」 をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Normal]になっていることを確認します。
- 2. DISPLAYキーを押します。Display設定メニューが表示されます。
- 3. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

● 数値データを表示する

- ・数値データだけを表示する
- 4. ジョグシャトルを回して, [Numeric]を選択します。
- 5. SELECTキーを押して、数値データだけの表示フォーマットを確定します。

- ・数値データと波形を表示する
- 4. ジョグシャトルを回して, [Numeric+Wave]を選択します。
- 5. SELECTキーを押して、数値データと波形の表示フォーマットを確定します。 波形表示の設定については、「9章」をご覧ください。

・数値データとバーグラフを表示する

- 4. ジョグシャトルを回して, [Numeric+Bar]を選択します。
- 5. SELECTキーを押して、数値データとバーグラフの表示フォーマットを確定します。

バーグラフは高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高 調波データをバーグラフ表示する」をご覧ください。

・数値データとX-Y波形を表示する

- 4. ジョグシャトルを回して, [Numeric+X-Y]を選択します。
- 5. SELECTキーを押して、数値データとX-Y波形の表示フォーマットを確定します。

X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。X-Y波形表示の設定については、「9.11 X-Y波形を表示する」をご覧ください。

	Disp1ay	
+Select-	 Format 	
Numeric	Numeric	
Wave	 Item Anount 	
Х-У	8(4)	
Bar		
Vector		
Numeric+Wave	·	
Numeric+X-Y	Reset Exec	
Numeríc+Bar	•	
Wave + X-Y	Numeric Disp Items	
Wave + Bar		
P		
	<u> </u>	
		11 11
	L	

前項の「・数値データだけを表示する」を代表例として、以降の操作を説明します。

● 表示項目数を選択する

- 6. [Item Amount]のソフトキーを押します。表示項目数選択メニューが表示されます。
- 7. [8]~[All]のどれかのソフトキーを押して、表示項目数を選択します。

● 表示項目の順番をリセットする

[All]以外の表示項目数を選択したときは、表示項目の順番をリセットできます。

8. [Reset Exec]のソフトキーを押します。リセットが実行されます。

● 表示をスクロールする

・ [All]以外の表示項目数を選択したとき

- 8. [Numeric Disp Items]のソフトキーを押します。表示項目変更メニューが表示されます。
- 9. ジョグシャトルを回します。測定ファンクションの強調表示が移動します。 表示項目変更メニューの[Norm Item No.]欄に,強調表示されている測定ファン クションのデータ番号が表示されます。 表示項目変更メニューの[Function]欄に,強調表示されている測定ファンクショ ンを示す記号が表示されます。

表示項目変更メニューの[Element]欄に,強調表示されている測定ファンクションのエレメント/結線方式が表示されます。

・表示項目数[All]を選択したとき

- 8. ジョグシャトルを回します。測定ファンクションの強調表示が移動します。表示 項目変更メニューの[Function]に,強調表示されている測定ファンクションを示 す記号が表示されます。
- 9. ESCキーを押して、メニューを消去します。横方向の6項目(≥B)の数値データが 見えるようになります。

解 説

表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演 算区間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」「付録3 デ ルタ演算の求め方」をご覧ください。A,Bという結線方式については、「5.2 結線方式 を選択する」をご覧ください。

8数値表示

例 「エレメント1の電圧で,真の実効値」の場合

<u>Urms1</u>

「結線方式Aで組み合わされた各電力測定モジュール(エレメント)の電流の平均で, 単純平均」の場合

ldc∑A

● 表示フォーマットの選択

数値データの表示形態を、次の中から選択できます。測定ファンクションが選択されて いない、または、数値データが無いところは、データなし表示[------]になります。 · Numeric

- 数値データだけが表示されます。
- ・Numeric+Wave 数値データと波形が、画面の上下半分ずつに分かれて表示されます。波形表示の設 定については、「9.1~9.8節」をご覧ください。
- Numeric+Bar 数値データとバーグラフが、画面の上下半分ずつに分かれて表示されます。バーグ ラフは高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高調 波データをバーグラフ表示する」をご覧ください。
- Numeric+X-Y*
 数値データとX-Y波形が、画面の上下半分ずつに分かれて表示されます。X-Y波形表示の設定については、「9.11 X-Y波形を表示する」をご覧ください。
 * X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。
- 表示項目数の選択

同時に表示される数値データの項目数を、次の中から選択できます。

- · 8
 - ・表示フォーマットが[Numeric]のとき、数値データ8個が1列に表示されます。
 - ·表示フォーマットが[Numeric]以外のとき、数値データ4個が表示されます。
- · 16
 - ・表示フォーマットが[Numeric]のとき、数値データ16個が2列に表示されます。
 - ・表示フォーマットが[Numeric]以外のとき、数値データ8個が表示されます。
- · 42
 - ·表示フォーマットが[Numeric]のとき、数値データ42個が3列に表示されます。
- ・表示フォーマットが[Numeric]以外のとき,数値データ21個が表示されます。
- · 78
 - ・表示フォーマットが[Numeric]のとき、数値データ78個が3列に表示されます。
 - ・表示フォーマットが[Numeric]以外のとき、数値データ39個が表示されます。
- · All
 - ・表示フォーマットが[Numeric]のとき、縦方向に測定ファンクション25項目、横 方向が各エレメントと結線方式6項目を示す記号で、各項目に対する数値データ が示されている表が表示されます。
 - ・表示フォーマットが[Numeric]以外のとき,縦方向に測定ファンクション12項
 目,横方向が各エレメントと結線方式6項目を示す記号で,各項目に対する数値
 データが示されている表が表示されます。
 - ・横方向の6項目(≥B)は、メニューで隠れています。ESCキーを押して、メニュー を消去すると見えます。

● 表示項目順のリセット

[AII]以外の表示項目数を選択したときは、数値データの表示の順番を、あらかじめ設定 されている順番にリセットできます。リセット内容の詳細は、「付録4 初期設定/数 値データの表示順一覧表」をご覧ください。

● 表示のスクロール

1画面では、すべてのデータを表示しきれません。これを補うため、表示項目をスクロールして、次のデータを表示できます。

・ [All]以外の表示項目数を選択したとき

ジョグシャトルを回すと,測定ファンクションの強調表示が移動します。強調表示 されている測定ファンクションに対して,メニューの各項目の表示が次のように変 わります。

- ・[Norm Item No.]欄
- 強調表示されている測定ファンクションのデータ番号が表示されます。
- ・[Function]欄
 - ・ 強調表示されている測定ファンクションを示す記号が表示されます。
 - この欄に[None]が表示されたときは、測定ファンクションが選択されていない
 項目をジョグシャトルで選んでいます。このとき、測定ファンクションとデー
 タを表示するエリアには、データなし[------]が表示されます。
- ・[Element]欄 強調表示されている測定ファンクションのエレメント/結線方式が表示されます。
- ・表示項目数[All]を選択したとき

ジョグシャトルを回すと、測定ファンクションの強調表示が移動します。強調表示 されている測定ファンクションに対して、メニューの[Function]欄に、強調表示さ れている測定ファンクションを示す記号が表示されます。数値データが無いところ は、データなし表示[------]になります。

Note _

- ・ 表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演算区
 間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」「付録3 デルタ演算の求め方」をご覧ください。
- · A, Bという結線方式については, 「5.2 結線方式を選択する」をご覧ください。
- ・ 測定ファンクションが選択されていない,または,数値データが無いところは,データなし表示[------]になります。
- ・ 測定/演算結果が,決められた小数点位置,単位で表示しきれない場合,オーバーフロー表示 [-OF-]になります。
- ・電圧または電流入力のどちらか一方が、測定レンジの0.25%以下のとき、Urms、Umn、Uac、 Irms、Imn、Iac、およびこれらの測定ファンクションを元にして求めている他の測定ファンク ションはゼロ表示になります。 λ または ϕ はエラー表示[Error]になります。
- ・ 周波数の測定値が測定範囲外のとき、または入力信号が測定レンジの約3.5%以下のとき、fU またはflはエラー表示[Error]になります。
- ・ 力率 λ が1を超えて2以下の場合、 λ は[1]になります。 ϕ はゼロ表示になります。
- ・ λ が2を超えた場合、 λ と ϕ はエラー表示[Error]になります。
- ・ fU, flはゼロクロス検出により測定しています。測定時間内に入力信号の立ち上がりスロープのゼロクロス点が2点以上ないと、エラー表示「error」になります。

8.3 通常測定データの表示項目を変える

《機能説明は1.5節》

操作

操作キー

測定モードを通常測定モードにします。設定方法は、「5.1 測定モードを選択する」 をご覧ください。

1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Normal]になっていることを確認します。

数値データを表示する表示フォーマットで,表示項目数を[All]以外にします。設定方法 は,「8.2 通常測定データを表示する」をご覧ください。

- - * X-Y波形の表示は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Numeric]のときを代表例として、以降の操作を説明します。

[Numeric Disp Items]のソフトキーを押します。表示項目変更メニューが表示されます。

● 変更対象を選択する

4. ジョグシャトルを回して、変更しようとする項目を選択します。強調表示されて いるところが変更対象の項目です。

● 測定ファンクションを変える

- 5. [Function]のソフトキーを押します。測定ファンクション選択ボックスが表示されます。
- 6. ジョグシャトルを回して、[None]以降の測定ファンクションを選択します。
- 7. SELECTキーを押します。強調表示されているところに, 選択した測定ファンク ションの記号と数値データが表示されます。

● エレメント/結線方式を変える

- 8. [Element]のソフトキーを押します。エレメント/結線方式選択ボックスが表示されます。
- 9. ジョグシャトルを回して, [Element1]~[∑B]のどれかを選択します。
- 10. SELECTキーを押します。強調表示されているところに, 選択したエレメント番号または結線方式の記号(Σファンクション)と, 数値データが表示されます。

		7
	<u>Numeric Items</u> ONorm Item No. 1	
+Select-	◀ Function	
None	Urms	
Urms	∢ Element	1
Umean	Element 1	
Udc		
Uac		
Irms	l f	
Imean		
Idc		
Iac		
Р		1
•		

8

解 説

表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演 算区間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」「付録3 デ ルタ演算の求め方」をご覧ください。A,Bという結線方式については、「5.2 結線方式 を選択する」をご覧ください。

● 測定ファンクションの変更

- 1.2節の「●測定ファンクション」と1.7節の「デルタ演算」「ユーザー定義ファン クション」に示されている各項目が、選択できる測定ファンクションの種類です
- ·表示する測定ファンクション無し(None)の選択もできます。

● エレメント/結線方式の変更

変更するエレメント/結線方式を,次の中から選択できます。 Element1, Element2, Element3, Element4, ∑A, ∑B

Urms1	5.0517 V		Urms1	5.0517 V
Umn1	5.0516 V	3番目の項目の	Umn1	5.0516 V
Udc1	-0.0315 V	測定ファンクションの変更	Umn1	5.0516 V
Uac1	5.0516 V		Uac1	5.0516 V
Irms1	5.0530 A		Irms1	5.0530 A
Imn1	5.0551 A		Imn1	5.0551 A
			Urms1	5.0517 V
		3番目の項目の	Umn1	5.0516 V
		エレメントの変更	Udc2	-0.0307 V
			Uac1	5.0516 V
			Irms1	5.0530 A
			Imn1	5.0551 A
Note				

- 表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演算区 間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」「付録3 デルタ演算の求め方」をご覧ください。
- · A, Bという結線方式については, 「5.2 結線方式を選択する」をご覧ください。
- ・ 測定ファンクションが選択されていない、または、数値データが無いところは、データなし表示[------]になります。

8.4 高調波測定データを表示する

《機能説明は1.5節》

高調波測定モードのときに適用します。

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. DISPLAYキーを押します。Display設定メニューが表示されます。
- 3. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

● 数値データを表示する

• 数値データだけを表示する

- 4. ジョグシャトルを回して, [Numeric]を選択します。
- 5. SELECTキーを押して、数値データだけの表示フォーマットを確定します。

- ・数値データと波形を表示する
 - 4. ジョグシャトルを回して, [Numeric+Wave]を選択します。
 - 5. SELECTキーを押して、数値データと波形の表示フォーマットを確定します。 波形表示の設定については、「9章」をご覧ください。

- ・数値データとバーグラフを表示する
- 4. ジョグシャトルを回して, [Numeric+Bar]を選択します。
- 5. SELECTキーを押して,数値データとバーグラフの表示フォーマットを確定します。

バーグラフは高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高 調波データをバーグラフ表示する」をご覧ください。

・数値データとX-Y波形を表示する

- 4. ジョグシャトルを回して、[Numeric+X-Y]を選択します。
- 5. SELECTキーを押して,数値データとX-Y波形の表示フォーマットを確定します。
 - X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。X-Y波形表示の設定については、「9.11 X-Y波形を表示する」をご覧ください。

		-
	. Diantau	
. Poloot	DISPIAU	
•+select	a rurmat	
Numeric	Numeric	
Wave	Item Amount	
Х-У	8(4)	
Bar		
Vector		
Numeric+Wave	·	
Numeric+X-Y	Reset Exec	
Numeric+Bar	4	
	Numeric	
Wave + X-Y	Disp Items	
Wave + Bar		
		1
ļ		
		11 1
		11 I
		(<u> </u>

前項の「・数値データだけを表示する」を代表例として、以降の操作を説明します。

- 表示項目数またはリスト表示を選択する
 - 6. [Item Amount]のソフトキーを押します。表示項目数選択メニューが表示されます。
 - 7. [8]~[∑List]のどれかのソフトキーを押して,表示項目数を選択します。
- 表示項目の順番をリセットする

[8], [16]の表示項目数を選択したときは、表示項目の順番をリセットできます。

8. [Reset Exec]のソフトキーを押します。リセットが実行されます。

● 表示をスクロールする

・[8], [16]の表示項目数を選択したとき

- [Numeric Disp Items]のソフトキーを押します。表示項目変更メニューが表示されます。
- 9. [Harm Item No.]のソフトキーを押します。
- ジョグシャトルを回します。測定ファンクションの強調表示が移動します。 表示項目変更メニューの[Harm Item No.]欄に,強調表示されている測定ファンクションのデータ番号が表示されます。 表示項目変更メニューの[Function]欄に,強調表示されている測定ファンクションを示す記号が表示されます。 表示項目変更メニューの[Element]欄に,強調表示されている測定ファンクションのエレメント/結線方式が表示されます。 表示項目変更メニューの[Order]欄に,強調表示されている測定ファンクションの

次数が表示されます。

- ・ [Single List], [Dual List]のリスト表示を選択したとき
- 8. ジョグシャトルを回します。次数データの強調表示が移動します。 Display設定メニューの[Order]欄に,強調表示されている次数が表示されます。

- ・[Σ List]のリスト表示を選択したとき
- 8. ジョグシャトルを回します。Display設定メニューの[Order]欄に表示されている 次数が変わります。その次数の測定ファンクションU, I, P, S, Q, λ, φなど のデータが表示されます。

Display ◀ Format Numeric	
Item Amount Σ List	
Order 3	

		Element1	Element2	Element3	Element4	ΣÂ	ΣΒ
U	E V	1 4.0523	4.0364	4.0490	4.0520	4.0523	4.0364
I	[A	1 0.00074	0.005m	0.004m	0.0042	0.00074	0.005m
Р	EW	1 -0.001	0.00002	0.00002	-0.00002k	-0.001	0.00002
S	[VA	1 0.003	0.00002	0.00002	0.00002k	0.003	0.00002
Q	[var	1 -0.003	0.00000	0.00000	-0.00001k	-0.003	0.00000
λ	C	1-0.33571	0.99896	0.99904	-0.90485	-0.33571	0.99896
ø	L.	1-109.616	2.620	2.509	-154.803		

● 表示をページスクロールする

[Single List], [Dual List]のリスト表示を選択したとき、ページスクロールができます。

· それまで表示されていた次数より大きい次数の数値データを、リスト表示する

- 8. [Page Down Scroll Exec]のソフトキーを押します。それまで表示されていた次 数より大きい次数の数値データがリスト表示されます。
- 9. 表示しようとする次数のリスト表示になるまで, [Page Down Scroll Exec]のソフトキーを繰り返し押します。最大500次まで,ページスクロールできます。

・ それまで表示されていた次数より小さい次数の数値データを、リスト表示する

- 10. [Page Up Scroll Exec]のソフトキーを押します。それまで表示されていた次数 より小さい次数の数値データがリスト表示されます。
- 11. 表示しようとする次数のリスト表示になるまで、[Page Up Scroll Exec]のソフトキーを繰り返し押します。全体(Total)またはdc(0次)まで、ページスクロールできます。

CH1(U1) 49 Hz

011

151.216 296.471 482.932 268.053

Error 0.000 0.000 0.194 0.210

0.00017kU 69.787 A -0.001kW 0.001kW

> Error 0.000 0.000 0.201 0.198

> > .0027 .00001 .00001

0.0000 -0.82691 -151.222 1259.659 1944.546 3292.198

Error Error 0.000 0.000 0.205 0.181

0.0295

PLL Freq

U1 I1 P1 S1 Q1 $\lambda 1$ $\phi 1$ Uthd Ithd Pthd Uthf Ithf Ithf hof hcf

U2 12 P2 S2

Uz¥

								Display
								Fornat
		Or.			Or.			 according
02	0.000kuar	42	0.0063	21.224	48	0.0025	8.365	Numeric
λZ	-0.81938	49	0.0005	1.739	50	0.0004	1.512	
42	-145.022 *	51	0.0003	1.028	52	0.0007	2.389	Iten Anount
Uthd	1434.261	53	0.0014	4.713	54	0.0011	3.797	
Ithd	0.230	55	0.0009	3.024	56	0.0006	1.880	Single List
Pthd	0.135	57	0.0012	4.229	58	0.0013	4.514	
Uthf	Error	59	0.0006	2.003	60	0.0011	3.889	4
Ithf	Error	61	0.0006	2.112	62	0.0009	3.092	List Itens
Utif	0.000	63	8666.0	2.881	64	0.0006	1.946	
Itif	6.114	65	0.0008	2.823	66	0.0009	3.049	
huf	0.208	67	0.0006	2.173	68	0.0005	1.801	Order
hCf	0.001	69	0.0004	1.516	70	0.0003	1.045	
		71	0.0004	1.265	72	0.0003	0.873	94
U3	0.00021kV	73	0.0006	2.048	74	0.0002	0.580	0.00
13	0.0012 A	75	0.0002	0.542	76	0.0007	2.291	
P3	-0.0000kW	77	0.0006	2.087	78	0.0005	1.640	Page Up
\$3	0.0000kUA	79	0.0011	3.778	80	0.0007	Z.484	Scroll Exec
03	0.0000kuar	81	0.0009	3.027	82	0.0005	1.532	
λ3	-0.27261	83	0.0009	2.997	84	0.0006	2.179	<u> </u>
\$3	-105.820 °	85	0.0011	3.881	86	0.0010	3.481	Page Down
Uthd	1113.390	87	0.0009	3.095	88	0.0009	3.070	Scroll Exec
Ithd	837.963	89	0.0014	4.775	90	0.0007	2.310	
Pthd	33.279	91	0.0072	24.558	92	0.0146	49.630	
llthf	Error	93	0.0047	15.825	94	0.0019	6.411	

0.0094	31.961	2	0.0046	15.512		
0.0035	11.845	4	0.0021	7.201	 Iten Anount 	
0.0040	13,644	6	0.0008	2.825	Teen moune	
0.0027	9.002	8	0.0012	3,906	Single List	
0.0006	1.948	10	0.0005	1.641		
0.0005	1.554	12	0.0008	2.551	4	
0.0006	2.006	14	0.0005	1.646	List Itens	
0.0005	1.663	16	0.0004	1.352		
0.0002	0.511	18	0.0003	0.980		
0.0006	1.907	20	0.0005	1.549	Order	
0.0002	0.673	22	0.0006	2.175		
0.0003	0.993	24	0.0006	1.956	46	
0.0007	2.248	26	0.0003	1.051	6573	
0.0005	1.813	28	0.0004	1.263		
0.0004	1.305	30	0.0003	0.957	Page Up	
0.000Z	0.791	32	0.0001	0.496	Scroll Exec	
0.0002	0.517	34	0.0005	1.631		
0.0006	2.100	36	8,0008	2.837		
0.0011	3.268	38	8000.0	2.739	Page Down	
0.0010	3.396	40	0.0022	7.297	Scroll Exec	
0.0016	5.296	42	0.0022	2.572		
0.0009	3.068	44	0.0054	18.201		
0.0035	11.221	46	0.0169	52.463		
		0e			Display ◀ Fornat	
6.666.6	3,038	96	0.0011	3.210	Numeric	
0.0007	2,398	98	0.0005	1.253		
0.0002	0.626	100	0.0006	2.184	4 Iten Anount	
		102				
		104			Single List	
		106				
		108			4	
		110			List Itens	
		112				
		114				
		116			Order	
		118				
		120			142	
		122				
		124				
		126			Page Up	
		128			Scroll Exec	

0 0104

-35 403

Display Format

Page Down Scroll Exe

e i c

解説

表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演 算区間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧くださ い。A, Bという結線方式については、「5.2 結線方式を選択する」をご覧ください。

例 「エレメント2の20次高調波電圧」の場合

「結線方式Bで組み合わされた各電力測定モジュール(エレメント)の30次高調波 電流の平均」の場合

● 表示フォーマットの選択

数値データの表示形態を、次の中から選択できます。測定ファンクションが選択されていない、または、数値データが無いところは、データなし表示[------]になります。

Numeric

数値データだけが表示されます。

- ・Numeric+Wave 数値データと波形が、画面の上下半分ずつに分かれて表示されます。波形表示の設 定については、「9.1~9.8節」をご覧ください。
- Numeric+Bar 数値データとバーグラフが、画面の上下半分ずつに分かれて表示されます。バーグ ラフは高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高調 波データをバーグラフ表示する」をご覧ください。
- · Numeric+X-Y*
 - 数値データとX-Y波形が、画面の上下半分ずつに分かれて表示されます。X-Y波形表示の設定については、「9.11 X-Y波形を表示する」をご覧ください。
 - * X-Y波形の表示は、ファームウエアパージョン2.01以降の製品(PZ4000)に適用できます。

● 表示項目数またはリスト表示の選択

同時に表示される数値データの項目数,またはリスト表示を,次の中から選択できま す。

- · 8
 - ・表示フォーマットが[Numeric]のとき、数値データ8個が1列に表示されます。
 - ・表示フォーマットが[Numeric]以外のとき、数値データ4個が表示されます。
- · 16
 - ・表示フォーマットが[Numeric]のとき、数値データ16個が2列に表示されます。
 - ·表示フォーマットが[Numeric]以外のとき、数値データ8個が表示されます。
- Single List
 - ・表示フォーマットが[Numeric]のとき、1種類の測定ファンクションの数値データ 48個が2列に表示されます。
 - ・表示フォーマットが[Numeric]以外のとき、1種類の測定ファンクションの数値 データ22個が2列に表示されます。

- Dual List
 - ・表示フォーマットが[Numeric]のとき、2種類の測定ファンクションの数値データ 24個ずつが、それぞれ1列に表示されます。
 - ・表示フォーマットが[Numeric]以外のとき、2種類の測定ファンクションの数値 データ11個ずつが、それぞれ1列に表示されます。
- ・ Σ List
 - ・縦方向に測定ファンクションU, I, P, S, Q, λ, φなど,横方向が各エレメン
 トと結線方式6項目を示す記号で、各項目に対する数値データが示されている表が表示されます。
 - ・横方向の6項目(≥B)は、メニューで隠れています。ESCキーを押して、メニュー を消去すると見えます。
- 表示項目順のリセット

[8], [16]の表示項目数を選択したときは、数値データの表示の順番を、あらかじめ設 定されている順番にリセットできます。リセット内容の詳細は、「付録4 初期設定/ 数値データの表示順一覧表」をご覧ください。

● 表示のスクロール

1画面では、すべてのデータを表示しきれません。これを補うため、表示項目をスクロールして、次のデータを表示できます。

・[8], [16]の表示項目数を選択したとき

ジョグシャトルを回すと、測定ファンクションの強調表示が移動します。強調表示 されている測定ファンクションに対して、メニューの各項目の表示が次のように変 わります。

- [Harm Item No.]欄
 強調表示されている測定ファンクションのデータ番号が表示されます。
- ・[Function]欄
 - · 強調表示されている測定ファンクションを示す記号が表示されます。
 - この欄に[None]が表示されたときは、測定ファンクションが選択されていない 項目をジョグシャトルで選んでいます。このとき測定ファンクションとデータ を表示するエリアには、データなし[------]が表示されます。
- ・[Element]欄

強調表示されている測定ファンクションのエレメント/結線方式が表示されます。

- [Order]欄
 強調表示されている測定ファンクションの次数が表示されます。全体(Total)また
 はdc(0次)から,最大500次まで表示されます。
- [Single List], [Dual List]のリスト表示を選択したとき
 - Display設定メニューの[Order]欄に、全体(Total)またはdc(0次)から、最大500次 まで表示されます。
 - ・ 測定ファンクションがU, I, Pのときは、それぞれの高調波含有率Uhdf, Ihdf, Phdf を表示します。U, I, P以外の測定ファンクションのときは、高調波含有率を表示 するところはデータ無し表示[------]になります。

・[Σ List]のリスト表示を選択したとき

Display設定メニューの[Order]欄に、全体(Total)またはdc(0次)から、最大500次ま で表示され、その次数の測定ファンクションU、I、P、S、Q、 λ 、 ϕ などのデータ が画面に表示されます。

● 表示のページスクロール

[Single List], [Dual List]のリスト表示を選択したとき、ページスクロールができます。

- ・それまで表示されていた次数より大きい次数の数値データをリスト表示するページ スクロールができます。最大500次まで、ページスクロールできます。
- ・それまで表示されていた次数より小さい次数の数値データをリスト表示するページ スクロールができます。全体(Total)またはdc(0次)まで、ページスクロールできます。

Note _

- 表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演算区
 間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧ください。
- · A, Bという結線方式については、「5.2 結線方式を選択する」をご覧ください。
- 次数は、全体(Total)またはdc(0次)から、最大500次まで表示できます。ただし、PLLソースの 周波数によって自動的に決まる解析次数上限値(17.5節参照)までの次数の数値データが、高調 波測定で求められたデータです。
- ・ 測定ファンクションが選択されていない、または、数値データが無いところは、データなし表示[------]になります。
- ・ 測定/演算結果が,決められた小数点位置,単位で表示しきれない場合,オーバーフロー表示 [-OF-]になります。
- ・ 周波数の測定値が測定範囲外のとき、または入力信号が測定レンジの約3.5%以下のとき、fU またはflはエラー表示[Error]になります。
- ・ 高調波測定モードのときの位相差は、付録2の演算式の結果に従い表示されます。
- ・力率 λ が1を超えて2以下の場合、 λ は[1]になります。 ϕ はゼロ表示になります。
- · λ が2を超えた場合、 λ と ϕ はエラー表示[Error]になります。
- 高調波測定モードでモータモジュールの測定ファンクションを表示するときの注意 下記説明文中の測定ファンクションの記号の意味については、15.2節以降または付録 2をご覧ください。
 - Speed, Torque, Sync, Slip, Pm, ηmA, ηmBの数値データは0次(直流)成分で す。高調波測定モードでの最小次数(Min Order)の初期設定は1次になっています。
 Speed, Torque, Sync, Slip, Pm, ηmA, ηmBの数値データを表示するには、 最小次数を0次にする必要があります。
 - ・通常測定モード時のTorqueの数値データは、単純平均の値です。高調波測定モード 時のTorqueの各高調波成分と全体(Total)の数値データは、実効値です。通常測定 モード時と同じ数値データは、Trq(dc)のところに表示されます。
 - · SpeedとPmの0次(直流)成分が、全体の数値データとして表示されます。
 - ・PLLソース(Pll Source)と周波数同期ソース(Sync Speed Source)が同じチャネル に設定されているときにだけ、SyncとSlipの数値データが表示されます。
 - ・ η mAにはP \geq A全体に対するPm全体の比率, η mBにはP \geq B全体に対するPm全体の 比率を表示します。

8.5 高調波測定データの表示項目を変える

高調波測定モードのときに適用します。

《機能説明は1.5節》

・操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。

数値データを表示する表示フォーマットで,表示項目数またはリスト表示を[Σ List]以 外にします。設定方法は,「8.4 高調波測定データを表示する」をご覧ください。

DISPLAYキーを押します。Display設定メニューが表示されます。
 [Format]が, [Numeric], [Numeric+Wave], [Numeric+Bar], [Numeric+X-Y]*
 のどれかになっていることを確認します。
 [Item Amount]が, [8], [16], [Single List], [Dual List]のどれかになっている
 ことを確認します。
 * X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。
 す。

IM 253710-01

表示フォーマットが、[Numeric]のときを代表例として、以降の操作を説明します。

● [8], [16]の表示項目数を選択したとき

[Numeric Disp Items]のソフトキーを押します。表示項目変更メニューが表示されます。

・変更対象を選択する

- 4. [Harm Item No.]のソフトキーを押します。
- 5. ジョグシャトルを回して、変更しようとする項目を選択します。強調表示されて いるところが変更対象の項目です。

・測定ファンクションを変える

- 6. [Function]のソフトキーを押します。測定ファンクション選択ボックスが表示されます。
- 7. ジョグシャトルを回して, [None]以降の測定ファンクションを選択します。
- 8. SELECTキーを押します。強調表示されているところに, 選択した測定ファンク ションの記号と数値データが表示されます。
- ・エレメント/結線方式を変える
- 9. [Element]のソフトキーを押します。エレメント/結線方式選択ボックスが表示されます。
- 10. ジョグシャトルを回して, [Element1]~[∑B]のどれかを選択します。
- 11. SELECTキーを押します。強調表示されているところに, 選択したエレメント番号または結線方式の記号(とファンクション)と, 数値データが表示されます。

・次数を変える

- 12. [Order]のソフトキーを押します。
- 13. ジョグシャトルを回して、次数を設定します。強調表示されているところに、設定した次数と数値データが表示されます。

- [Single List], [Dual List]のリスト表示を選択したとき
 - 3. [List Items]のソフトキーを押します。表示項目変更メニューが表示されます。

・変更対象を選択する

- 4. [List Item No.]のソフトキーを押します。
- 5. ジョグシャトルを回して, [1]または[2]のどちらかを選択します。選択されたリ スト項目が表示されます。

・測定ファンクションを変える

- 6. [Function]のソフトキーを押します。測定ファンクション選択ボックスが表示されます。
- 7. ジョグシャトルを回して、測定ファンクションを選択します。
- 8. SELECTキーを押します。選択した測定ファンクションの記号と数値データが表示されます。

・エレメント/結線方式を変える

- 9. [Element]のソフトキーを押します。エレメント/結線方式選択ボックスが表示されます。
- 10. ジョグシャトルを回して, [Element1]~[∑B]のどれかを選択します。
- 11. SELECTキーを押します。選択したエレメントまたは結線方式の記号と数値デー タが表示されます。

・次数を変える

- 12. ESCキーを押して、Display設定メニューに戻ります。
- 13. ジョグシャトルを回して、次数を設定します。表示がスクロールされ、設定した 次数の数値データが表示されます。ページスクロール(8.4節参照)もできます。

解 説

表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演 算区間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧くださ い。A、Bという結線方式については、「5.2 結線方式を選択する」をご覧ください。

●表示項目数またはリスト表示の選択で、[8]、[16]の表示項目数を選択したとき
 ・測定ファンクションの変更

- ・1.2節の「●測定ファンクション」(Σファンクションを除く)と1.7節の「「ユーザー定義ファンクション」に示されている各項目が、選択できる測定ファンクションの種類です
- ·表示する測定ファンクション無し(None)の選択もできます。

・エレメント/結線方式の変更

変更するエレメント/結線方式を,次の中から選択できます。 Element1, Element2, Element3, Element4, ≥A, ≥B

・次数の変更

全体(Total)またはdc(0次)から、最大500次まで設定できます。

U1(1)	$0.0094 \mathrm{V}$		U1(1)	$0.0094 \mathrm{V}$
I 1(1)	0.0002 A	3番目の項目の	I 1(1)	0.0002 A
P 1(1)	-0.000 W	測定ファンクションの変更	ø1(1)	130.853 °
S1(1)	$0.000 \mathrm{VA}$		S1(1)	$0.000 \mathrm{VA}$
			T1(1)	0.0004 V
		3番目の項目の		0.0094 V
		エレメントの変更	11(1)	0.0002 A
		×	P 2(1)	-0.001kW
			S1(1)	$0.000 \mathrm{VA}$
			↓ 次数の変更	
			U1(1)	$0.0094\mathrm{V}$
			I 1(1)	0.0002 A
			P 2(36)	0.000kW
			S1(1)	$0.000 \mathrm{VA}$

- ●表示項目数またはリスト表示の選択で、[Single List]、[Dual List]のリスト表示を選択したとき
 - ・変更対象の選択

リストとして、2種類設定できます。[Single List]のときは、リスト項目NO.[1]の データを2列のリストで表示しています。[Dual List]のときは、両方を1列ずつ表示 しています。

リスト項目No.として,[1]または[2]のどちらかを選択できます。

・測定ファンクションの変更

変更する測定ファンクションを,次の中から選択できます。

- U, I, P, S, Q, λ , ϕ , ϕ U, ϕ I, Z, Rs, Xs, Rp, Xp, Torque^{*}
- * ファームウエアパージョン2.01以降の製品(PZ4000)で、モータモジュールがエレメント番 号4のスロットに装着されているときに適用できます。
- ・エレメント/結線方式の変更

前述の「●表示項目数またはリスト表示の選択で,[8],[16]の表示項目数を選択し たとき」と同じです。 測定ファンクション[Torque]は,ファームウエアバージョン2.01以降の製品(PZ4000)で,エ レメント番号4のスロットにモータモジュールが装着されているときだけに適用されます。そ

のため選択されたエレメントは、「Torque」以外の測定ファンクションに適用されます。

・次数の変更

前述の「●表示項目数またはリスト表示の選択で,[8],[16]の表示項目数を選択したとき」と同じです。

Note _

- ・表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演算区 間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧ください。
- · A, Bという結線方式については, 「5.2 結線方式を選択する」をご覧ください。
- ・ 測定ファンクションが選択されていない,または,数値データが無いところは,データなし表示[------]になります。
- 次数は、全体(Total)またはdc(0次)から、最大500次まで設定できます。ただし、PLLソースの 周波数によって自動的に決まる解析次数上限値(17.5節参照)までの次数の数値データが、高調 波測定で求められたデータです。

9.1 表示するチャネルを選択する

操作キー

《機能説明は1.6節》

ーを押します。

操作

Display設定メニューで選択する

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

● 波形を表示する

- ・ 波形だけを表示する
- 3. ジョグシャトルを回して, [Wave]を選択します。
- 4. SELECTキーを押して,波形だけの表示フォーマットを確定します。

Select	Display_ ▼ Format Numeric ▼ Item Amount	
Vector Numeric+Wave Numeric+Bar Wave + Bar	Reset	
<u> </u>	Numeric Disp Items	
- ・数値データと波形を表示する
- 3. ジョグシャトルを回して, [Numeric+Wave]を選択します。
- 4. SELECTキーを押して、数値データと波形の表示フォーマットを確定します。 数値データ表示の設定については、「8章」をご覧ください。

- ・波形とバーグラフを表示する
- 3. ジョグシャトルを回して, [Wave+Bar]を選択します。
- SELECTキーを押して、波形とバーグラフの表示フォーマットを確定します。 パーグラフは高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高 調波データをパーグラフ表示する」をご覧ください。

		~
	Disp1ay	
Select-	I Format	
Numeríc	Numeric	
Wave	Item Anount	
	· ·····	
Bar	8	
Vector		
Numericaliane		
Harici ic wave		
Numero de Deve		
NUMER 1C+Bar		
	Reset	
Wave + Bar	Exec	
J	4 1	
	Numeric	11 1
	Disp Items	
	Diap reces	

- ・波形とX-Y波形を表示する
 - 4. ジョグシャトルを回して, [Wave+X-Y]を選択します。
 - 5. SELECTキーを押して,波形とX-Y波形の表示フォーマットを確定します。 X-Y波形の表示は,ファームウエアパージョン2.01以降の製品(PZ4000)に適用できま す。X-Y波形表示の設定については,「9.11 X-Y波形を表示する」をご覧ください。

• Soloot	Display	
+select	¶ FUrmat	
Numeric	Numeric	
Wave	◀ Item Amount	
Х-Ү	8(4)	
Bar		
Vector		
Numeric+Wave	[]	
Numeric+X-Y	Exec	
Numeric+Bar	4 	
Wave + X-Y	Disp Items	
Wave + Bar		
	<u> </u>	

前項の「・波形だけを表示する」を代表例として、以降の操作を説明します。

- 5. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。
- 6. [Wave Display]のソフトキーを押します。波形表示選択ボックスが表示されます。

●1つずつのチャネル(演算波形を含む)の波形を表示(ON)/非表示(OFF)にする

- 7. ジョグシャトルを回して、設定しようとするチャネルを選択します。
- 8. SELECTキーを押します。波形表示選択ボックスのチャネルの左にあるボタンが 強調表示されると、そのチャネルの波形は表示されます。チャネルの左にあるボ タンの強調表示が解除されると、その波形は非表示になります。
- 一括して全チャネル(演算波形を含む)の波形を表示(ON)/非表示(OFF)にする

・一括して表示する

- 7. ジョグシャトルを回して, [All ON]を選択します。
- 8. SELECTキーを押します。波形表示選択ボックスのチャネルの左にあるボタンが すべて強調表示され、全チャネルの波形が表示されます。

・一括して非表示にする

- 9. ジョグシャトルを回して, [All OFF]を選択します。
- 10. SELECTキーを押します。波形表示選択ボックスのチャネルの左にあるボタンの 強調表示が解除され、全チャネルの波形が非表示になります。

		7
Wave Display	Wave	
© A11 ON © CH5	Wave Display	
A11 OFF CH6	◀ Wave Format	
⊙ CH1 ⊙ CH7	Sing1e	
© CH2 © CH8	Interpolate	
O CH3 O Math1	\square \sim	
O CH4 O Math2	Graticule	
/	■ □ ⊞	
	Scale Value	
	DFF ON	
	Trace Label	
	DFF ON	
	Mapping	
	Auto Fixed	
	ļļ	

チャネル設定メニューで選択する

この操作では、演算波形の表示/非表示の選択はできません。

波形を表示する(ON)/しない(OFF)を選択する

- 1. CH1~CH8キーから,設定しようとするチャネルキーを押します。チャネル設定 メニューが表示されます。
- [Wave Display]のソフトキーを押して, [ON]または[OFF]のどちらかを選択します。

	~
CH1 Wave Display DFF ON	
◀ U Range 2000Vpk	
V Zoom x0.1	
◀ Labe1	
	2

解 説

● 表示フォーマットの選択

波形の表示形態を,次の中から選択できます。

Wave

波形だけが表示されます。

- ・Numeric+Wave 数値データと波形が、画面の上下半分ずつに分かれて表示されます。数値データ表 示の設定については、「8章」をご覧ください。
- ・Wave+Bar 波形とバーグラフが、画面の上下半分ずつに分かれて表示されます。バーグラフは 高調波測定時に有効です。バーグラフ表示の設定については、「9.10 高調波デー タをバーグラフ表示する」をご覧ください。
- ・Wave+X-Y 波形とX-Y波形が、画面の上下半分ずつに分かれて表示されます。X-Y波形表示の設 定については、「9.11 X-Y波形を表示する」をご覧ください。
 * X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

● 表示チャネルの選択

入力モジュールが挿入されているエレメントに対応したCH1~CH8の範囲で、各チャネルの波形を表示する(ON)/しない(OFF)の選択ができます。また、後述(11章参照)の 演算した波形(Math1, Math2)を表示する(ON)/しない(OFF)の選択もできます。

表示をONにしたチャネルは,チャネルキーの左上のインジケータが点灯します。

Note _

モジュールが装着されていないエレメントのチャネルは、ONにできません。
 記憶媒体から波形を読み込んだときは、入力波形を表示できなくなります。

9.2 垂直ポジションを移動する

操作キー

《機能説明は1.6節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は,「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが, [Wave]のときを代表例として,以降の操作を説明します。 (垂直ポジションの移動は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用 できます。)

- 3. CH1~CH8キーから,設定しようとするチャネルキーを押します。チャネル設定 メニューが表示されます。
- 4. [Position]のソフトキーを押して、ジョグシャトルの対象を[Position]にします。
- 5. ジョグシャトルを回して、波形の垂直ポジションを移動します。
 - ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧下 さい。

	<u> </u>
<u>CH1</u> Wave Display OFF DN	
◀ U Range 2000Vpk	
© 0 200m x1	
Position 0.0%	
◀ Labe1 CH1	

9

波形表示

解 説

垂直軸方向のズームで,見たい部分が画面枠の外に出てしまったというようなときに,垂 直軸方向の波形の表示位置(垂直ポジション)を見易い位置に移動できます。ファームウエ アパージョン2.01以降の製品(PZ4000)に適用できます。

- ・0.000~±130.000%の範囲で設定できます。
- ・ 垂直軸方向のズーム率が1のとき(9.8節参照),波形表示画面の垂直軸方向の全幅の半分 を100%としています。画面の垂直軸方向の中心から波形表示画面の上限が100%,下 限が-100%です。

Note _

- · 演算波形(Math1, Math2)は, 垂直ポジションの移動はできません。
- - 2. 本節の垂直ポジションを移動する操作で、見たい部分を中心位置に移動します。
 - 3. 垂直軸方向のズーム率(9.8節参照)を設定します。

9.3 画面を分割して波形を表示する

操作キー

《機能説明は1.6節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は,「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]^{*}のどれか になっていることを確認します。

* X-Y波形の表示は,ファームウエアパージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

● 画面分割数を選択する

- 3. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。
- 4. [Wave Format]のソフトキーを押します。画面分割数選択メニューが表示されます。
- 5. [Single]~[Quad]のどれかのソフトキーを押して、画面分割数を選択します。

● 波形の割り付け方法を選択する

6. [Wave Mapping]のソフトキーを押します。割り付け方法選択ボックスが表示されます。

ファームウエアバージョン2.01より前の製品(PZ4000)では、[Mapping]のソフトキー を押して、[Auto]または[Fixed]のどちらかを選択します。

- 7. ジョグシャトルを回して, [Mode]を選択します。
- 8. SELECTキーを押して, [Auto], [Fixed]および[User]のどれかを選択します。 [User]を選択したときは,操作9に進みます。
- 9. ジョグシャトルを回して、設定しようとするチャネルを選択します。
- 10. SELECTキーを押します。表示位置番号設定ボックスが表示されます。
- 11. ジョグシャトルを回して、[0]~[3]のどれかを選択します。
- 12. SELECTキーを押して,表示位置を確定します。

画面を等分割して、各チャネルの波形を分割した画面に割り付けることができます。

● 画面分割数の選択

画面の分割数を,次の中から選択できます。

- · Single:分割なし
- ・ Dual:2等分割
- Triad:3等分割
- · Quad:4等分割

分割数によって、分割画面1つの垂直軸方向の表示点数が、次のように変わります。電 圧レベルなどのサンプリングデータの垂直軸の表示分解能(1.6節参照)は、変わりませ ho

Single: 432点, Dual: 216点, Triad: 144点, Quad: 108点

● 波形の割り付け方法

· Auto

分割した画面の一番上からCH1, CH2, …, Math1, Math2の波形が割り付けられ ます。表示がOFFになっているチャネルを除いて、割り付けられます。

· Fixed

表示がOFFになっているチャネルも割り付けの対象になります。Math1は一番上の 表示枠, Math2は上から2番目の表示枠に表示されます。

画面分割数が4等分割[Quad]で、CH1~CH6/CH8/Math2が表示ON、CH7/Math1 が表示OFFのとき

uto	l	Fixed		
CH1, CH5		CH1,	CH5	
CH2, CH6		CH2,	CH6,	Math2
СНЗ, СН8		CH3		
CH4, Math2		CH4,	CH8	

• User	
--------	--

表示ON/OFFに関わらず、分割した画面に任意のチャネルを割り付けられます。表 示位置を0~3の番号で選択できます。番号0から順に、分割した画面の一番上から 割り付けられます。ファームウエアバージョン2.01以降の製品(PZ4000)に適用でき ます。

User(CH2に0, Math1に1, Math2に3の

1	番号	を設え	Ε,	3等分	割時)

CH2, Math2	0,	3	
Math1	1		設定された番号順
	2		に表示されます。

9

波形表示

表示補間をする 9.4

操作キ・

《機能説明は1.6節》

・ 操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は、「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

З. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。

Ŧ

[Interpolate]のソフトキーを押して、[・・・]または[^_]のどちらかを選択します。 4.

(]		
Displau			Wa.	ive
Format				
			Wave I)isp1ay
			4 Marie	Format
			a waye	, rornat
			Sir	ıg1e
			Inter	molate
			Incer	porace
			÷	\sim
			Grat	icule
				10010
			-	
			Peale	Ilature
			SUATE	; value
			DFF	ON
			The second	Islat
			IFace	Laber
Wave				
Setting			DFF	ON
5				
	1		Max	in long
			nap	wind
	11 1		1	
	11 1		Auto	Fixed
		1		

時間軸方向のサンプリングデータが500点未満(補間領域)では、表示点間(ラスタ間)がつながりません。このとき、間を補間し波形を表示する機能です。次の中から選択できます。

・補間領域のとき

 $\cdot \sim$

2点間を直線的に補間します。

補間領域でないとき
 垂直軸方向のドットを結びます。

補間領域のとき

9.5 グラティクルを変える

操作キー

・ 操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は、「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されます。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

- 3. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。
- 4. [Graticule]のソフトキーを押して, [冊], [□], [団]のどれかを選択します。

7

Wave	
Wave Display	
Wave Format	
Sing1e	
Interpolate	
\odot \sim	
Graticule	
■ □ ⊞	
Scale Value	
DFF ON	
Trace Label	
DFF ON	
Mapping	
Auto Fixed	

解 説

画面にグリッドや十字目盛りの表示を,次の中から選択できます。

· 🏢

グリッド表示

· 🗆

グリッドや十字目盛りの表示なし

·

十字目盛り表示

			+			
			+			
			+			
	 	-		-	 	
	 			-		
	 		-	1		
	 		-			
	 			1	 	
	 		-		 	
	 		-	+	 	
	 		-	+	 	
	 		-	+	 	
	 		-	•	 	

9.6 スケール値の表示をON/OFFする

操作キー

・ 操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は、「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されます。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

- 3. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。
- (Scale Value)のソフトキーを押して、[ON]または[OFF]のどちらかを選択します。

Wave	ill J
♥ Wave Display	
 Wave Format Single 	
Interpolate	
Graticule	
Scale Value DFF ON	
Trace Label	
Mapping Auto Fixed	

各チャネルの垂直軸の上限値と下限値,および水平軸(時間軸)の画面左右端の値を,表示 するかしないかの選択ができます。

- ・ON:スケール値を表示します。
- ・OFF:スケール値を表示しません。

9.7 波形のラベル名を設定する

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

● ラベル名を設定する

- 1. CH1~CH8キーから,設定しようとするチャネルキーを押します。チャネル設定 メニューが表示されます。
- 2. [Label]のソフトキーを押します。キーボードが表示されます。
- キーボードを操作して、ラベル名を入力します。
 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

波形を表示する表示フォーマットにします。設定方法は, 「9.1 表示するチャネルを 選択する」をご覧ください。

- 4. DISPLAYキーを押します。Display設定メニューが表示されます。
- 5. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

```
表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。
```

● ラベル名を表示する(ON)/しない(OFF)を選択する

- 6. [Wave Setting]のソフトキーを押します。波形メニューが表示されます。
- [Trace Label]のソフトキーを押して, [ON]または[OFF]のどちらかを選択します。

解 説

● ラベル名の設定

各チャネルのラベル名を8文字以内で設定できます。

● ラベル名の表示ON/OFF

波形のラベル名(各チャネル名)を、表示するかしないかの選択ができます。

- · ON:ラベル名を表示します。
- · OFF:ラベル名を表示しません。

^{*} X-Y波形の表示は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

9.8 波形をズームする

操作キー

《機能説明は1.6節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

```
操作
```

波形を表示する表示フォーマットにします。設定方法は, 「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

垂直軸方向のズームをする

- 3. CH1~CH8キーから,設定しようとするチャネルキーを押します。チャネル設定 メニューが表示されます。
- 4. [V Zoom]のソフトキーを押します。
- 5. ジョグシャトルを回して、ズーム率を設定します。

<u>CH1</u> Wave Display DFF ON	
≰ II Banαe	
2000Upk	
ð 11 2mm	
x0.1	
◀ Labe1	

時間軸方向のズームをする

● ズーム表示の種類を選択する

- 3. ZOOMキーを押します。Zoom設定メニューが表示されます。
- 4. [Mode]のソフトキーを押します。ズーム表示の種類の選択メニューが表示されま す。
- 5. [Main]~[Z1&Z2]のどれかのソフトキーを押して,ズーム表示の種類を選択しま す。

● ズーム表示領域の画面分割数を選択する

- 6. [Zoom Format]のソフトキーを押します。ズーム表示領域の画面分割数の選択メ ニューが表示されます。
- 7. [Main]~[Quad]のどれかのソフトキーを押して,ズーム表示領域の画面分割数を 選択します。

● ズーム対象波形を選択する

8. [Allocation]のソフトキーを押します。ズーム対象波形選択ボックスが表示されます。

・1つずつの波形を対象(ON)/非対象(OFF)にする

- 9. ジョグシャトルを回して、設定しようとするチャネルを選択します。
- 10. SELECTキーを押します。波形名の左にあるボタンが強調表示されると、その波 形は対象になります。波形名の左にあるボタンの強調表示が解除されると、その 波形は非対象になります。操作13に進みます。

・一括して全波形を対象(ON)/非対象(OFF)にする

一括して対象にする

- 9. ジョグシャトルを回して, [All ON]を選択します。
- 10. SELECTキーを押します。ズーム対象波形選択ボックスの波形名の左にあるボタンがすべて強調表示され、全波形が対象になります。

一括して非対象にする

- 11. ジョグシャトルを回して, [All OFF]を選択します。
- 12. SELECTキーを押します。ズーム対象波形選択ボックスの波形名の左にあるボタンの強調表示が解除され、全波形が非対象になります。

9 波形表示

● ズーム率を設定する

- [Z1 Mag]または[Z2 Mag]のソフトキーを押して、ジョグシャトルの対象を、[Z1 Mag], [Z2 Mag], または[Z1 Mag]と[Z2 Mag]の両方のどれかにします。[Z1 Mag]と[Z2 Mag]の両方をジョグシャトルの対象にするには、前項の「●ズーム 表示の種類を選択する」で、Z1とZ2が2つとも選択されていることが必要です。
- 14. ジョグシャトルを回して、ズーム率を設定します。

● ズーム位置を設定する

- 15. [Z1 Position]または[Z2 Position]のソフトキーを押して、ジョグシャトルの対象を、[Z1 Position]、[Z2 Position]、または[Z1 Position]と[Z2 Position]の両方のどれかにします。[Z1 Position]と[Z2 Position]の両方をジョグシャトルの対象にするには、前項の「●ズーム表示の種類を選択する」で、Z1とZ2が2つとも選択されていることが必要です。
- 16. ジョグシャトルを回して、ズーム位置を設定します。

1	
200m	
◀ Mode	
Ma i n&21&22	
Zoon Format	
Main	
 Allocation 	
21 Mag v2	
x2	
O Z1 Position	
2m00.0	11 1
O Z2 Position	
2m00.0	
	11 1
	11 1
	<u> </u>

解説

垂直軸方向のズーム

表示されている各チャネルの波形ごとに拡大/縮小ができます。ズーム率は次の中から選 択できます。

0.1, 0.2, 0.25, 0.4, 0.5, 0.75, 0.8, 1, 1.14, 1.25, 1.33, 1.41, 1.5, 1.6, 1.77, 2, 2.28, 2.66, 2.83, 3.2, 3.54, 4, 5, 8, 10, 12.5, 16, 20, 25, 40, 50, 100

時間軸方向のズーム

選択されている全波形を、2種類のズーム率で、時間軸方向に拡大できます。

● ズーム表示の種類の選択

ズームをしない通常波形(Main波形)とズーム波形(Z1波形とZ2波形の2つ)を、次のように組み合わせて表示できます。

- Main
 - ズームしていない通常の波形だけを表示します。
- Main&Z1

画面上段に通常の波形を表示します。下段にズームボックスZ1内の波形をズーム表示します。

Z1 Only

ズームボックスZ1内の波形だけをズーム表示します。

 Main&Z1&Z2
 画面上段に通常の波形を表示します。下段左側に、ズームボックスZ1内の波形を ズーム表示します。下段右側に、ズームボックスZ2内の波形をズーム表示します。

Main&Z2

画面上段に通常の波形を表示します。下段にズームボックスZ2内の波形をズーム表示します。

· Z2 Only

ズームボックスZ2内の波形だけをズーム表示します。

・ Z1&Z2
 画面上段にズームボックスZ1内の波形をズーム表示します。下段にズームボックス
 Z2内の波形をズーム表示します。

● ズーム表示領域の画面分割数の選択

Z1とZ2のズーム表示領域を等分割して、各波形を分割した画面に割り付けることができます。画面の分割数を、次の中から選択できます。

- ・ Main: 「9.3 画面を分割して波形を表示する」の[Wave Format]で設定した分割数 が有効になります。
- · Single:分割なし
- · Dual:2等分割
- Triad:3等分割
- · Quad:4等分割
- ズーム波形の割り付け方法は、「9.3 画面を分割して波形を表示する」で設定した割り付け方法が有効になります。

● ズーム対象波形の選択

ズーム表示の対象になる波形を,次の中から選択できます。

CH1~CH8, Math1, Math2

ただし、「9.1 表示するチャネルを選択する」の設定で、表示がOFFになっている波 形はズーム対象になりません。

● ズーム率の設定

- ・ 選択できる最大倍率は表示レコード長と観測時間に依存します。たとえば観測時間20sで表示レコード長100kワードのとき10,000倍、観測時間20sで表示レコード長1Mワードまたは4Mワードのとき100,000倍です。表示レコード長が短くなると最大倍率は小さくなります。
- · Z1, Z2(2箇所のズーム波形)で,別々のズーム率を設定できます。
- ・表示レコード長が表示点数に対して不足している、または、波形を拡大し過ぎているなどで画面上の表示点数が500点未満のときは、表示補間の機能で、時間軸方向に表示点間が補間されます。
- ・Z1とZ2の両方のズーム率を、同時に同じ設定にするには、前項の「●ズーム表示の 種類の選択」で、Z1とZ2が2つとも選択されていることが必要です。

	レコード	、長を分割しな	いとき	レコード長を分割したとき			
	(Aca 🕹 🗆	ニューでIRec D)ivision]を	(Aca×=	(Acgメニューで[Bec Division]を		
観測時間	OFFにし	たとき)		ONにした	ことき)		設定ステップ
	i	設定レコード長	تر	設定レコード長			
	100 kワード	1 Mワード (オプション)	4 Mワード (オプション)	100 kワード	1 Mワード (オプション)	4 Mワード (オプション)	
1 ks	×10000	×100000	×100000	×5000	×50000	×100000	1-2.5-5ステップ
400 s	×10000	×100000	×100000	×2000	×20000	×100000	1-2-4ステップ
200 s	×10000	×100000	×100000	×5000	×50000	×100000	1-2-5ステップ
100 s	×10000	×100000	×100000	×5000	×50000	×100000	1-2.5-5ステップ
40 s	×10000	×100000	×100000	×2000	×20000	×100000	1-2-4ステップ
20 s	×10000	×100000	×100000	×5000	×50000	×100000	1-2-5ステップ
10 s	×10000	×100000	×100000	×5000	×50000	×100000	1-2.5-5ステップ
4 s	×10000	×100000	×100000	×2000	×20000	×100000	1-2-4ステップ
2 s	×10000	×100000	×100000	×5000	×50000	×100000	1-2-5ステップ
1 s	×10000	×100000	×100000	×5000	×50000	×50000	1-2.5-5ステップ
400 ms	×10000	×100000	×100000	×2000	×20000	×100000	1-2-4ステップ
200 ms	×10000	×100000	×100000	×5000	×50000	×100000	1-2-5ステップ
100 ms	×10000	×50000	×50000	×5000	×50000	×50000	1-2.5-5ステップ
40 ms	×10000	×20000	×20000	×2000	×20000	×20000	1-2-4ステップ
20 ms		×10000		×5000	×10000	×10000	1-2-5ステップ
10 ms		×5000		×5000			1-2.5-5ステップ
4 ms		×2000		×2000			1-2-4ステップ
2 ms		×1000		×1000			1-2-5ステップ
1 ms	×500			×500			1-2.5-5ステップ
400 μs	×200			×200			1-2-4ステップ
200 µs		×100		×100			1-2-5ステップ
100 μs		×50		×50			1-2.5-5ステップ
40 µs		×20		×20			1-2-4ステップ
20 µs		×10			×10		1-2-5ステップ
10 μs	×5				×5		1-2.5-5ステップ

- ズーム位置の設定
 - ・通常測定モードでタイムベースが内部クロックのときのズーム位置は、時間を単位 として設定します。タイムベースが外部クロックまたは高調波測定モードのときの ズーム位置は、データポイントを単位として設定します。Main波形と Z1またはZ2 波形を同時に表示しているときは、Main波形の表示枠内にズーム位置を示すズーム ボックスが表示され、ズーム位置が確認できます。
 - ・通常測定モードでタイムベースが内部クロックのときのズームボックスの移動範囲は、のs(画面左端)~観測時間(画面右端)までです。タイムベースが外部クロックまたは高調波測定モードのときのズームボックスの移動範囲は、設定レコード長分のデータポイント数になります。たとえば、設定レコード長が100kワードのときは、データポイント0(画面左端)~データポイント100k(画面右端)の範囲になります。
 - · ズームの中心はズームボックスの中心で,ズームボックスの中心から左右に波形が ズームされます。
 - ・通常測定モードでタイムベースが内部クロックのときのズーム位置の設定ステップは、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高調波測定モードのときのズーム位置の設定ステップは、1ポイントです。
 - ・ 直線で囲まれたズームボックスがZ1,破線で囲まれた方がZ2です。それぞれに独立 したボックスです。したがって、Z1とZ2のズーム位置は、別々に設定できます。
 - ・Z1とZ2の両方のズームボックスの間隔を変えずに、同時に位置設定するには、前項の「●ズーム表示の種類の選択」で、Z1とZ2が2つとも選択されていることが必要です。

9.9 高調波のベクトル表示をする

《機能説明は1.6節》

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. DISPLAYキーを押します。Display設定メニューが表示されます。
- 3. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

● ベクトル表示をする

- 4. ジョグシャトルを回して, [Vector]を選択します。
- 5. SELECTキーを押して、ベクトル表示のフォーマットを確定します。

● 数値データの表示をする(ON)/しない(OFF)を選択する

6. [Numeric]のソフトキーを押して, [ON]または[OFF]を選択します。

● ベクトルをズームする

(ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。)

- [U Mag]または[I Mag]のソフトキーを押して、ジョグシャトルの対象を、[U Mag], [I Mag], または[U Mag]と[I Mag]の両方のどれかにします。
- 8. ジョグシャトルを回して、ズーム率を設定します。

解 説

高調波測定モードのときにベクトル表示できます。

● 表示フォーマットの選択

[Vector]を選択して、ベクトル表示の形態にします。結線方式Aで組み合わされた各エレメントの基本波U(1)、I(1)の位相差と大きさ(実効値)の関係を、ベクトル表示できます。垂直軸の上の方向を0(角度ゼロ)とし、各信号のベクトルを表示します。

● 数値データ表示のON/OFF

数値データを、表示するかしないかの選択ができます。各信号の大きさや信号間の位相差の値を、ベクトル表示画面にいっしょに表示できます。位相差の表示方式については、後述の「10.6 位相差の表示方式を選択する」をご覧ください

- · ON:数値データを表示します。
- ・OFF:数値データを表示しません。

● ベクトルのズーム率の設定

ベクトルの大きさを変えることができます。ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

- ・ズーム率を0.100~100.000の範囲で設定できます。
- ·基本波U(1)とI(1)のズーム率を別々に設定できます。

・数値データを表示していない場合,ベクトルの大きさをズーム表示した場合 「2.3 画面表示」の「●高調波のベクトル表示」をご覧ください。

9.10 高調波データをバーグラフ表示する

《機能説明は1.6節》

高調波測定モードのときに適用します。

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. DISPLAYキーを押します。Display設定メニューが表示されます。
- 3. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

● バーグラフ表示をする

- ・バーグラフだけを表示する
- 4. ジョグシャトルを回して, [Bar]を選択します。
- 5. SELECTキーを押して, バーグラフだけの表示フォーマットを確定します。バー グラフが2つ表示されます。

	(
	Displau	
●•Select-	Format	
Numeric	Bar	
Wave	⊙Bar Iten No.	
Bar	1	
Vector	◀ Function	
Numeríc+Wave	U	
Numeríc+Bar	Element	
Wave + Bar	Element 1	
 	⊙Bar Marker1+	
	0 order	
	0 order	
	🕙 Start Order	
	0	11 11
	e Ena Uraer	
		رب

・数値データとバーグラフを表示する

- 4. ジョグシャトルを回して, [Numeric+Bar]を選択します。
- 5. SELECTキーを押して,数値データとバーグラフの表示フォーマットを確定しま す。バーグラフが2つ表示されます。

数値データ表示の設定については、「8章」をご覧ください。

	(
	Display	
+Select-	◀ Format	
Numeric	Bar	
Wave	⊙Bar Item No.	
Bar	1	
Vector	 Function 	
Numeric+Wave	U	
Numeric+Bar	 Element 	
Wave + Bar	Element 1	
	OBar Marker1+	
	Bar Marker2×	11 1
	0 order	
	🔿 Start Order	
	⊙ End Order Ø	
	L	
		<u></u>

- ・ 波形とバーグラフを表示する
- 4. ジョグシャトルを回して, [Wave+Bar]を選択します。
- 5. SELECTキーを押して, 波形とバーグラフの表示フォーマットを確定します。 バーグラフが2つ表示されます。

波形表示の設定については、「9.1~9.8節」をご覧ください。

		<u> </u>
	Displau	
•Select	◀ Format	
Numeric	Bar	
Wave	○Bar Item No.	
Bar	1	
Vector	 Function 	
Numeric+Wave	U	
Numeric+Bar		
Wave + Bar	Element 1	
	⊖Bar Marker1+ A order	
)Bar Marker2×	11 1
	0 order	
	🔿 Start Order	
	🕙 End Order	
	<u> </u>	

前項の「・波形とバーグラフを表示する」を代表例として、以降の操作を説明します。

6. [Bar Setting]のソフトキーを押します。Barメニューが表示されます。

● 設定対象にするバーグラフを選択する

- 7. [Bar Item No.]のソフトキーを押します。
- ジョグシャトルを回して、[1]または[2]のどちらかを選択します。[1]を選択する と、パーグラフ表示領域の上側のバーグラフが対象になります。[2]を選択する と、パーグラフ表示領域の下側のバーグラフが対象になります。
- 測定ファンクションを選択する
 - 9. [Function]のソフトキーを押します。測定ファンクション選択ボックスが表示されます。
 - 10. ジョグシャトルを回して、測定ファンクションを選択します。
 - 11. SELECTキーを押します。選択した測定ファンクションの記号とバーグラフが表示されます。

● エレメントを選択する

- 12. [Element]のソフトキーを押します。エレメント選択ボックスが表示されます。
- 13. ジョグシャトルを回して、[Element1]~[Element4]のどれかを選択します。
- 14. SELECTキーを押します。選択したエレメントの記号とバーグラフが表示されま す。

9

波形表示

● マーカーの位置を設定する

- 15. [Bar Marker1+ / Bar Marker2×]のソフトキーを押して、ジョグシャトルの対象を、[Bar Marker1+]、[Bar Marker2×]、または[Bar Marker1+]と[Bar Marker2×]の両方のどれかにします。
- 16. ジョグシャトルを回して、マーカーの位置を次数で設定します。

● バーグラフ表示の範囲を設定する

・バーグラフ表示の開始次数を設定する

- 17. [Start Order / End Order]のソフトキーを押して、ジョグシャトルの対象を、 [Start Order]にします。
- 18. ジョグシャトルを回して、バーグラフ表示の開始次数を設定します。

・バーグラフ表示の終了次数を設定する

- [Start Order / End Order]のソフトキーを押して、ジョグシャトルの対象を[End Order]にします。
- 20. ジョグシャトルを回して、バーグラフ表示の終了次数を設定します。

水平軸を高調波の次数,垂直軸を各高調波の大きさとして,バーグラフで各高調波の大き さを表示できます。

● 表示フォーマットの選択

バーグラフの形態を、次の中から選択できます。

- Bar
 - バーグラフだけが表示されます。
- ・Numeric+Bar 数値データとバーグラフが、画面の上下半分ずつに分かれて表示されます。数値 データ表示の設定については、「8章」をご覧ください。
- ・Wave+Bar 波形とバーグラフが、画面の上下半分ずつに分かれて表示されます。波形表示の設 定については、「9.1~9.8節」をご覧ください。

● 設定対象にするバーグラフの選択

バーグラフを2種類設定できます。[1](バーグラフ1)または[2](バーグラフ2)のどちらか を選択できます。

● 測定ファンクションの選択

測定ファンクションを,次の中から選択できます。

- U, I, P, S, Q, λ , ϕ , ϕ U, ϕ I, Z, Rs, Xs, Rp, Xp, Torque^{*}
- * ファームウエアバージョン2.01以降の製品(PZ4000)で,モータモジュールがエレメント番号 4のスロットに装着されているときに適用できます。

● エレメントの選択

エレメントを,次の中から選択できます。

Element1, Element2, Element3, Element4

測定ファンクション[Torque]は、ファームウエアバージョン2.01以降の製品(PZ4000)で、エ レメント番号4のスロットにモータモジュールが装着されているときだけに適用されます。そ のため選択されたエレメントは、[Torque]以外の測定ファンクションに適用されます。

● マーカーの位置の設定

- ・マーカーは、バーグラフ1とバーグラフ2に2つ(+と×)ずつ表示されます。
- ·マーカーの位置は、次数で設定できます。
- ・バーグラフ2には、マーカーの位置を示す次数が表示されます。
- バーグラフ1のマーカー+とバーグラフ2のマーカー+の位置は同じです。マーカー ×もバーグラフ1とバーグラフ2の同じ位置にあります。
- ・最小設定値は、0(dc)次です。ただし、測定ファンクションが φ, φ U, φ Iのとき は、0次の値がないので、0次はバーグラフ表示されません。
- ・最大設定値は,解析次数上限値です。解析次数上限値は,PLLソースの周波数によって最大500次までの範囲で自動的に決まります。詳細は,17.6節をご覧ください。
- ・バーグラフ1とバーグラフ2のマーカーを同時に同じ次数に設定するには、[Bar Marker1+]と[Bar Marker2×]の両方が、ジョグシャトルの対象になっていること が必要です。

● バーグラフ表示の範囲の設定

- ・バーグラフ表示の範囲は、次数で設定できます。
- ・バーグラフ1とバーグラフ2のバーグラフ表示の範囲は同じです。
- ・最小設定値は、0(dc)次です。ただし、測定ファンクションが φ, φ U, φ Iのとき は、0次の値がないので、0次はバーグラフ表示されません。
- ・最大設定値は,解析次数上限値です。解析次数上限値は,PLLソースの周波数によって最大500次までの範囲で自動的に決まります。

9.11 X-Y波形を表示する

操作キー

《機能説明は1.6節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択メニューが表示されま す。

● X-Y波形を表示する

X-Y波形の表示は,ファームウエアバージョン2.01以降の製品(PZ4000)に適用できます。

- ・ X-Y波形だけを表示する
- 4. ジョグシャトルを回して, [X-Y]を選択します。
- 5. SELECTキーを押して、X-Y波形だけの表示フォーマットを確定します。

	(
	Display	
•Select	◀ Format	
Numeric	Х-Ү	
Wave	X Trace	
Х-Ү	CH1	
Bar	🕑 Start Pos	
Vector	0 • End Pos 100000	
Numeric+Wave	Interpolate	
Numeric+X-Y	·~ 🖂	
Numeric+Bar		
Wave + X-Y		
Wave + Bar		

・数値データとX-Y波形を表示する

- 4. ジョグシャトルを回して, [Numeric+X-Y]を選択します。
- 5. SELECTキーを押して,数値データとX-Y波形の表示フォーマットを確定します。

数値データ表示の設定については、「8章」をご覧ください。

			<u></u>
		Display	\square
R	•Select	Format	
	Numeric	Х-У	
	Wave	◀ X Trace	
	Х-У	CH1	
	Bar	 Start Pos 	
	Vector	© End Pos 100000	
	Numeric+Wave	Interpolate	
	Numeric+X-Y	·~ 🖂	
	Numeric+Bar		
	Wave + X-Y		
	Wave + Bar		

- ・波形とX-Y波形を表示する
- 4. ジョグシャトルを回して, [Wave+X-Y]を選択します。
- 5. SELECTキーを押して,波形とX-Y波形の表示フォーマットを確定します。 波形表示の設定については,「9.1~9.8節」をご覧ください。

	Displau	
At Select	4 Format	
Numeric	x-y	
Mave	X Trace	
X-Y	CH1	
Bar	Start Pos	
Vector	○ 0 ② End Pos 100000	
Numeric+Wave	Interpolate	
Numeric+X-Y	··· 🖂	
Hunci ic+bai		
Wave + X-Y		
Wave + Bar		
		11 1
	1	

前項の「・波形とX-Y波形を表示する」を代表例として、以降の操作を説明します。

6. [X-Y Setting]のソフトキーを押します。X-Yメニューが表示されます。

● X軸(水平軸)を選択する

- 7. [X Trace]のソフトキーを押します。X軸選択ボックスが表示されます。
- 8. ジョグシャトルを回して, [CH1]~[Math2]からX軸を選択します。
- 9. SELECTキーを押して,X軸を確定します。

● X-Y波形の表示範囲を設定する

・開始位置を設定する

- 10. [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を[Start Pos]にします。
- 11. ジョグシャトルを回して、T-Y波形上で開始位置を設定します。

・終了位置を設定する

- 12. [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を[End Pos]にします。
- 13. ジョグシャトルを回して、T-Y波形上で終了位置を設定します。

・開始位置/終了位置を同時に設定する

- 14. [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を、[Start Pos]と[End Pos]の両方にします。
- 15. ジョグシャトルを回して、開始位置と終了位置の間隔を変えないで、X-Y波形の 表示範囲を設定します。

● 表示補間を設定する

16. [Interpolate]のソフトキーを押して、[・・・・]または[^\-v]のどちらかを選択します。

X軸(水平軸)に指定したチャネルの入力信号の振幅レベルをとり、垂直軸(Y軸)にその他の 入力信号(表示がONになっている信号)の振幅レベルをとって、信号間の振幅レベルの関係 をみることができます。X-Y波形と通常のT-Y波形(時間軸と振幅レベルによる表示波形)の 同時観測も可能です。X-Y波形の表示は、ファームウエアバージョン2.01以降の製品 (PZ4000)に適用できます。

● 表示フォーマットの選択

X-Y波形表示の形態を,次の中から選択できます。

- · X-Y
 - X-Y波形だけが表示されます。
- Numeric+X-Y

数値データとX-Y波形が、画面の上下半分ずつに分かれて表示されます。数値データ 表示の設定については、「8章」をご覧ください。

·Wave+X-Y

波形(通常のT-Y波形)とX-Y波形が、画面の上下半分ずつに分かれて表示されます。 波形表示の設定については、「9.1~9.8節」をご覧ください。

● X軸(水平軸)とY軸(垂直軸)の割り当て

- ・X軸
 - 任意の波形トレース(CH1~CH8, Math1, Math2)を指定できます。
- ・Y軸

X軸に指定した波形トレース以外で,表示がONになっている波形トレースがすべて 対象です。

● X-Y波形の表示範囲の設定

- ・通常測定モードでタイムベースが内部クロックのときの表示範囲は、時間を単位として設定します。タイムベースが外部クロックまたは高調波測定モードのときの表示範囲は、データポイントを単位として設定します。T-Y波形とX-Yを同時に表示しているときは、T-Y波形の表示枠内に開始位置(1点鎖線)と終了位置(破線)が表示され、X-Y波形の表示範囲が確認できます。
- 通常測定モードでタイムベースが内部クロックのときの開始位置と終了位置の移動
 範囲は、Os(画面左端)~観測時間(画面右端)までです。タイムベースが外部クロック
 または高調波測定モードのときの開始位置と終了位置の移動範囲は、設定レコード
 長分のデータポイント数になります。たとえば、設定レコード長が100kワードのと
 きは、データポイント0(画面左端)~データポイント100k(画面右端)の範囲になります。
- ・通常測定モードでタイムベースが内部クロックのときの表示範囲の設定の設定ステップは、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高調波測定モードのときの表示範囲の設定の設定ステップは、1ポイントです。
- ・開始位置と終了位置の間隔を変えずに同時に移動するには、[Start Pos]と[End Pos]の両方が、ジョグシャトルの対象になっていることが必要です。

● 表示補間の設定

· • • • •

補間をしません。全サンプリングデータを元にX-Y波形を表示します。したがってX-Y波形の表示範囲内にあるデータが多いとX-Y波形を表示するまでに時間がかかりま す。

· •⁄~

2点間を直線的に補間します。サンプリングデータをP-P圧縮して得られた波形表示 データを元にX-Y波形を表示します。補間をしないときに比べ表示するデータ点数が 少ないので,X-Y波形を表示するまでの時間がかかりません。ただし、カーソル測定 (11.4節参照)のときに表示されるマーカーが補間線以外の位置に表示される場合があ ります。

Note _

- ・T-Y波形とX-Y波形の同時表示時のT-Y波形の分割表示は、「9.3 画面を分割して波形を表示 する」の[Wave Format]で設定した分割数が有効になります。
- · 時間軸方向のズームは、T-Y波形表示のみが対象になります。
- ある波形の波形トレースの水平軸単位が時間で、他の波形トレースの水平軸単位が周波数のときは、X-Y波形を表示しません。
- · X-Y波形の垂直軸方向のズームは、CHキーの「V Zoom」ソフトキーでできます。

操作キー

10.1 測定/演算区間を設定する,演算を再実行する

《機能説明は1.2節》

測定/演算区間の設定は,通常測定モードのときだけ設定できる方法と,通常測定モードと高調波測定モードのどちらのモードでも設定できる方法があります。

ーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は、「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は、ファームウエアバージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

● ゼロクロスで区間を設定する

測定モードを通常測定モードにします。設定方法は、「5.1 測定モードを選択する」 をご覧ください。

3. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Normal]になっていることを確認します。
- 4. MEASUREキーを押します。Measure設定メニューが表示されます。
- 5. [Mode]のソフトキーを押して, [ON]を選択します。
- 6. [Period]のソフトキーを押します。区間設定選択メニューが表示されます。
- 7. [Zero Cross]のソフトキーを押して、ゼロクロス設定を選択します。

- 同期ソースを選択する
- 8. [Sync Source]のソフトキーを押します。エレメント選択ボックスが表示されます。
- 9. ジョグシャトルを回して、[Element1]~[Element4]から、同期ソースを設定しようとするエレメントを選択します。
- 10. SELECTキーを押します。同期ソース選択ボックスが表示されます。
- 11. ジョグシャトルを回して, [CH1]~[Ext Clk]のどれかを選択します。
- 12. SELECTキーを押して,同期ソースを確定します。

10-5ページの操作13に進みます。

- カーソルで区間を設定する
 通常測定モードと高調波測定モードのどちらのモードでも設定できます。
 通常測定モードのときは操作3~13まで,高調波測定モードのときは操作7~8まで設定
 操作をしてください。
 - 3. MEASUREキーを押します。Measure設定メニューが表示されます。
 - 4. [Mode]のソフトキーを押して, [ON]を選択します。
 - 5. [Period]のソフトキーを押します。区間設定選択メニューが表示されます。
 - 6. [Cursor]のソフトキーを押して, カーソル設定を選択します。
 - ・ 測定/演算区間の開始位置を設定する
 (通常測定モードと高調波測定モードのどちらのモードでも設定できます。)
 - [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を、[Start Pos]にします。高調波測定モードのときは、[Start Pos]だけになります。
 - 8. ジョグシャトルを回して、波形上で開始位置を設定します。

・測定/演算区間の終了位置を設定する (通常測定モードのときだけ設定できます。)

- 9. [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を[End Pos]にします。
- 10. ジョグシャトルを回して、波形上で終了位置を設定します。

・測定/演算区間の開始位置/終了位置を同時に設定する (通常測定モードのときだけ設定できます。)

- 11. [Start Pos / End Pos]のソフトキーを押して、ジョグシャトルの対象を、[Start Pos]と[End Pos]の両方にします。
- 12. ジョグシャトルを回して,開始位置と終了位置の間隔を変えないで,測定/演算区 間を設定します。

10-5ページの操作13に進みます。

-

	-
Measure Mode OFF DN Period	
Zero Cross	
Cursor	
Ext Trigger	
◀ △ Measure	
OFF	
◀ User Defined	
Next 1/2	

	-
Heasure Mode OFF DN	
Cursor	
 Start Pos 0.00ms End Pos 100.00ms 	
Measure Exec	
▲ Measure OFF	
◀ User Defined	
Next 1/2	

- 外部トリガで区間を設定する 測定モードを通常測定モードにします。設定方法は、「5.1 測定モードを選択する」 をご覧ください。
 - 3. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Normal]になっていることを確認します。
 - 4. MEASUREキーを押します。Measure設定メニューが表示されます。
 - 5. [Mode]のソフトキーを押して, [ON]を選択します。
 - 6. [Period]のソフトキーを押します。区間設定選択メニューが表示されます。
 - 7. [Ext Trigger]のソフトキーを押して,外部トリガ設定を選択します。

・トリガの状態を選択する

8. [Pattern]のソフトキーを押して, [ビ]または[丹]のどちらかを選択します。

10-5ページの操作13に進みます。

● 演算を再実行する

 [Measure Exec]のソフトキーを押します。前ページで設定された測定/演算区間 で、すべての数値データが求められます。

解 説

通常測定モードと高調波測定モードのどちらも、本節で設定した測定/演算区間のサンプ リングデータから、測定ファンクションのデータ(数値データ)が求められます。

● 数値演算モードのON/OFF

数値演算をするかしないかの選択ができます。

 \cdot OFF

数値演算をしません。すべての数値データが求められないので,データを取り込ん でから波形を表示する周期が早くなります。

 \cdot ON

すべての数値データが求められます。また、数値演算の設定メニューが表示されます。

● 区間設定の選択

測定/演算区間を決める方法を,次の中から選択できます。選択したそれぞれの区間設 定方法の詳細は,次項以降をご覧ください。

- Zero Cross
 ゼロクロスで区間設定ができます。通常測定モードのときだけ設定できます。レベルゼロ(振幅ゼロ)の点を基準に自動的に決定された区間が、測定/演算区間になります。
- · Cursor

カーソルで区間設定ができます。通常測定モードと高調波測定モードのどちらでも 設定できます。通常測定モードのときは、カーソルで挟まれた区間が、測定/演算区 間になります。高調波測定モードのときは、開始位置のカーソルから、サンプリン グデータ点数8192点(終了位置のカーソル)までが測定/演算区間になります。

Ext Trigger

外部トリガで区間設定ができます。通常測定モードのときだけ設定できます。外部 トリガ入力コネクタに入力された信号が選択した状態(ビまたは凡)のとき、その状態の区間が測定/演算区間になります。

● ゼロクロス設定

基準になる入力信号が、レベルゼロ(振幅ゼロ)を立ち上がりスロープ*で横切る(ゼロクロス)画面内の最初の点から、レベルゼロを立ち上がりスロープで横切る画面内の最後の点までを測定/演算区間にします。画面内に立ち上がりスロープが1つまたは無いときは、画面内すべてが測定/演算区間になります。

同期ソースの選択

エレメントごとに、どの入力信号のゼロクロスに同期させるかの設定ができます。 同期の対象になる信号(同期ソース)は、次の中から選択できます。

· CH1~CH8

モジュールが装着されているエレメントの電圧または電流が、同期ソースになり ます。モジュールが装着されていないエレメントのチャネル番号は、表示されま せん。

• Ext

外部クロック入力コネクタに入力されたクロック信号が、同期ソースになりま す。クロック信号のゼロクロスに同期して測定/演算区間が決まります。この同期 ソースの仕様は、「6.3 タイムベースを選択する」の外部クロックの仕様と同じ です。

● カーソル設定

通常測定モードのときは、画面内に置かれた2本のカーソル(開始位置と終了位置)に挟まれた区間が、測定/演算区間になります。

高調波測定モードのときは、画面内に置かれた開始位置のカーソルから、サンプリング データ点数8192(終了位置のカーソル)点までが測定/演算区間になります。

- ・ 通常測定モードでタイムベースが内部クロックのときの開始位置(1点鎖線)/終了位置 (破線)の移動範囲は、Os(画面左端)~観測時間(画面右端)までです。タイムベースが 外部クロックまたは高調波測定モードのときの開始位置/終了位置の移動範囲は、設 定レコード長分のデータポイント数になります。たとえば、設定レコード長が100k ワードのときは、データポイント0(画面左端)~データポイント100k(画面右端)の範 囲になります。
- ・通常測定モードでタイムベースが内部クロックのとき、カーソルの位置がメニュー に時間で表示されるので、波形が表示されていなくても開始位置/終了位置を時間で 設定できます。波形を表示できる表示フォーマットにしておくと、波形を見ながら 開始位置/終了位置を設定できます。
- ・ 通常測定モードでタイムベースが内部クロックのときの開始位置/終了位置の設定ス テップは、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高 調波測定モードのときの開始位置/終了位置の設定ステップは、1ポイントです。
- ・開始位置と終了位置の間隔を変えずに同時に移動するには、[Start Pos]と[End Pos]の両方が、ジョグシャトルの対象になっていることが必要です。

● 外部トリガ設定

外部トリガ入力コネクタに入力された信号が,選択された状態(HiまたはLo)のとき,その区間が測定/演算区間になります。

外部トリガの状態の選択

次の中から選択できます。外部トリガの仕様については、「7.2 トリガソースを選択 する」をご覧ください。

·]=[

- 外部トリガがLoの状態の区間が、測定/演算区間になります。
- ·]

外部トリガがHiの状態の区間が、測定/演算区間になります。

● 演算の再実行

サンプリングデータの取り込みを停止している状態で、測定/演算区間や数値演算の設 定を変更して、演算の再実行ができます。測定ファンクションのデータを含めて、アベ レージングを除くすべての演算が再実行されます。

- Note _
 - 測定/演算確度を良くするため、測定/演算区間をできるだけ長く設定して、入力信号の周期 数を多くすることをおすすめします。
 - ・ 測定/演算区間を変更したときは、演算の再実行をしてください。

10.2 デルタ演算を選択する

《機能説明は1.7節》

操作

操作キー

測定モードを通常測定モードにします。設定方法は、「5.1 測定モードを選択する」 をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Normal]になっていることを確認します。
- 2. MEASUREキーを押します。Measure設定メニューが表示されます。
- 3. [Mode]のソフトキーを押して, [ON]を選択します。
- [ΔMeasure]のソフトキーを押します。デルタ演算設定メニューが表示されます。
- 5. [OFF]~[Star>Delta]のどれかのソフトキーを押して、デルタ演算を選択します。

-	~
Measure Mode OFF DN	
 Period Zero Cross 	
 Sync Source 	
Measure Exec	
◀ ⊿ Measure OFF	
◀ User Defined	
Next 1/2	

解 説

通常測定モードのときに、エレメント1,2,3間の電圧や電流の瞬時値(サンプリングデー タ)の和や差を求め、それを元に、測定ファンクションΔU(ΔUrms,ΔUmn,ΔUdc,Δ Uac)、ΔI(ΔIrms,ΔImn,ΔIdc,ΔIac)のデータを求めることができます。これをデル タ演算といいます。演算式は、「付録3」をご覧ください。測定/演算区間は、「1.2測 定モードと測定/演算区間」と同じです。デルタ演算の種類を、次の中から選択できます。

 \cdot OFF

デルタ演算をしません。

• u1-u2

エレメント1の電圧とエレメント2の電圧の差分を演算できます。たとえば下図のよう な回路の Δ U1(Δ Urms1, Δ Umn1, Δ Udc1, Δ Uac1)を求めることができます。

• i1-i2

エレメント1の電流とエレメント2の電流の差分を演算できます。たとえば下図のよう な回路の Δ I1(Δ Irms1, Δ Imn1, Δ Idc1, Δ Iac1)を求めることができます。

· 3P3W>3V3A

三相3線式の結線(3P3W)のデータから、3電圧3電流計法(3V3A)にしたときの他のデータを演算できます。

 $\Delta U1(\Delta Urms1, \Delta Umn1, \Delta Udc1, \Delta Uac1)$ $\Delta U3(\Delta Urms3, \Delta Umn3, \Delta Udc3, \Delta Uac3)$ $\Delta I1(\Delta Irms1, \Delta Imn1, \Delta Idc1, \Delta Iac1)$ $\Delta I3(\Delta Irms3, \Delta Imn3, \Delta Idc3, \Delta Iac3)$

10

数值演算

· Delta>Star

三相3線式または3電圧3電流計法のデータを使って、三角結線のデータから星形結線の データを演算(デルタ-スター変換)できます。

```
\Delta U1(\Delta Urms1, \Delta Umn1, \Delta Udc1, \Delta Uac1)

\Delta U2(\Delta Urms2, \Delta Umn2, \Delta Udc2, \Delta Uac2)

\Delta U3(\Delta Urms3, \Delta Umn3, \Delta Udc3, \Delta Uac3)

\Delta I4(\Delta Irms4, \Delta Imn4, \Delta Idc4, \Delta Iac4)
```


· Star>Delta

三相4線式のデータを使って,星形結線のデータから三角結線のデータを演算(スター-デルタ変換)できます。

Note _

- 演算対象のサンプリングデータが無い(たとえば、モジュールが装着されていない)場合、その サンプリングデータを「0」として演算します。
- デルタ演算の対象となるエレメントの測定レンジやスケーリング(PT/CT比や係数)を、できる だけ同じにすることをおすすめします。異なる測定レンジやスケーリングにしていると、サン プリングデータの測定分解能が異なるため、演算結果に誤差を生じます。
- ・サンプリングデータの取り込みを停止している状態で、デルタ演算の種類を選択してから、演算の再実行ができます。詳細は、10.1節をご覧ください。
- ・デルタ演算の測定ファンクションの記号に付く番号は、エレメント番号との関係はありません。たとえば、デルタ演算メニューで[i1-i2]を選択すると、「i1-i2」のデータで真の実効値を 演算し、そのデータは「ΔIrms1」のところに表示されます。
- ・ 測定/演算区間を変更したときは、演算の再実行をしてください。詳細は、10.1節をご覧くだ さい。

10.3 ユーザー定義ファンクションを設定する

操作キー

《機能説明は1.7節》

ーを押します。

操作

- 1. MEASUREキーを押します。Measure設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。
- 3. [User Defined]のソフトキーを押します。ユーザー定義ファンクション設定ダイ アログボックスが表示されます。

● ユーザー定義ファンクションの演算を実行する(ON)/しない(OFF)を選択する

- 4. ジョグシャトルを回して、[Function1]~[Function4]の中から設定しようとする ユーザー定義ファンクションを選択します。
- 5. SELECTキーを押して、[ON]または[OFF]のどちらかを選択します。

	Measure Mode
	Períod Zero Cross
User Defined Function 1-4	Sync Source
Function 1 OFF DN Unit	
Expression	Measure
Function 2 DFF_ON_ Unit	Exec
Function 3 DFF_ON_ Unit	OFF
Expression	User
Function 4 DFF_ON_ Unit	
Expression	Next 1/2
<u>></u>	

● 単位を設定する

- 6. ジョグシャトルを回して, [Unit]を選択します。
- 7. SELECTキーを押します。キーボードが表示されます。
- 8. キーボードを操作して、単位を設定します。

キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

● 演算式を設定する

- 9. ジョグシャトルを回して, [Expression]を選択します。
- 10. SELECTキーを押します。キーボードが表示されます。
- 11. キーボードを操作して、演算式を設定します。

キーボードの操作については,「4.1 数値や文字列を入力する」をご覧ください。

User Defined Function 1-4		
Function 1	OFF_DN Unit Ω	
Expression Function 2	UDFF_ONUnit	
Expression Function 3		
Expression		
Expression		

Function 1	
Expression	
Function 2	_DFFON Unit
Expression	
Function 3	DFF_ON_Unit
Expression	
Function 4	DFF_ON_ Unit
Expression	

lloon Defined Function 1.4

解 説

測定ファンクションの記号を組み合わせて演算式を作り、その数値データを使用して、 作った演算式の数値データを求めることができます。

● ユーザー定義ファンクションの演算のON/OFF

設定されたユーザー定義ファンクションの演算を、実行するかしないかの選択ができます。

- \cdot OFF
- 演算を実行しません。
- \cdot ON

演算を実行します。

● 単位の設定

・文字数

8文字以内。ただし、数値データの表示でAll表示のときなどでは、6文字までの表示 になります。

・文字の種類

キーボードに表示されている文字とスペース

● 演算式の設定

測定ファンクションとエレメント番号を合わせたもの(たとえばUrms1のように)を1つ の演算項として,通常測定モード,高調波測定モードともに4つ(F1~F4)ずつ演算式を 作ることができます。1つの式内の演算項は,16項まで設定できます。

・ 演算対象の測定ファンクション

測定ファンクション:演算項(演算式を定義するときの記号)という形で以下に示します。 ・通常測定モードの場合

Urms:URMS(), Umn:UMN(), Udc:UDC(), Uac:UAC(), Irms:IRMS(), Imn:IMN(), Idc:IDC(), Iac:IAC(), P:P(), S:S(), Q:Q(), λ :LAMBDA(), ϕ :PHI(), fU:FU(), fI:FI(), U+pk:UPPK(), U-pk:UMPK(), I+pk:IPPK(), I-pk:IMPK(), CfU:CFU(), CfI:CFI(), FfU:FFU(), FfI:FFI(), Z:Z(), Rs:RS(), Xs:XS(), Rp:RP(), Xp:XP(), Pc:PC(), η :ETA(), 1/ η :DIVETA(), Δ Urms:DELTAURM(), Δ Umn:DELTAUMN(), Δ Udc:DELTAUDC(), Δ Uac:DELTAUAC(), Δ Irms:DELTAIRM(), Δ Imn:DELTAIMN(), Δ Idc:DELTAIDC(), Δ Iac:DELTAIAC(), Torque:TORQUE(), Speed:SPEED(), SIp:SLIP(), Sync:SYNC(), η mA:MAETA(), η mB:MBETA()

- ・()内には測定信号を入力するエレメントを表す記号を入れます(デルタ演算 DELTAURM()~DELTAIAC()を除く)。エレメント1をE1, エレメント2を E2, エレメント3をE3, エレメント4をE4, SAをE5, SBをE6という記号で 表します。次のいくつかの演算記号を除いてE1~E6のどれかを設定できます。
 - ・FU()~FFI()の()内には,E1~E4のどれかを設定できます。
 - ・ ETA(), DIVETA(), TORQUE(), SPEED(), SLIP(), SYNC(),
 MAETA(), およびMBETA()の()内の設定は不要です。
- ・デルタ演算(DELTAURM()~DELTAIAC())の()内のエレメントの記号は、測定信号を入力するエレメントではなく、デルタ演算した結果を格納または表示する場所を示します。Δ1をE1、Δ2をE2、Δ3をE3、Δ4をE4という記号で表します。デルタ演算の定義の範囲内でE1~E4のどれかを設定できます。デルタ演算の詳細は10.2節をご覧ください。
- ・測定ファンクションのn(効率1)と1/n(効率2)は、「付録2 測定ファンクションの記号と求め方」に記載されている演算式で示すように百分率(%)で表示されますが、本節で演算されるETAとDIVETAは、比の値になります。
 例 n:80%、ETA=0.8

・高調波測定モードの場合

 $\begin{array}{l} U: U(\ ,\),\ I:I(\ ,\),\ P:P(\ ,\),\ S:S(\ ,\),\ Q:Q(\ ,\),\ \lambda:LAMBDA(\ ,\), \\ \varphi:PHI(\ ,\),\ \varphi U:UPHI(\ ,\),\ \varphi I:IPHI(\ ,\),\ Z:Z(\ ,\),\ Rs:RS(\ ,\), \\ Xs:XS(\ ,\),\ Rp:RP(\ ,\),\ Xp:XP(\ ,\),\ Uhdf:UHDF(\ ,\),\ Ihdf:IHDF(\ ,\), \\ Phdf:PHDF(\ ,\),\ Rp:RP(\ ,\),\ Xp:XP(\ ,\),\ Uhdf:UHDF(\ ,\),\ Ihdf:IHDF(\ ,\), \\ Phdf:PHDF(\ ,\),\ Uthd:UTHD(\),\ Ithd:ITHD(\),\ Pthd:PTHD(\), \\ Uthf:UTHF(\),\ Ithf:ITHF(\),\ Utif:UTIF(\),\ Itif:ITIF(\),\ hvf:HVF(\), \\ hcf:HCF(\),\ fU:FU(\),\ fI:FI(\),\ \varphi U1-U2:PHIU1U2(\), \\ \varphi U1-U3:PHIU1U3(\),\ \varphi U1-I1:PHIU1I1(\),\ \varphi U1-I2:PHIU1I2(\), \\ \varphi U1-I3:PHIU1I3(\),\ Torque:TORQUE(\),\ Speed:SPEED(\),\ Slip:SLIP(\), \\ Sync:SYNC(\),\ mA:MAETA(\),\ mB:MBETA(\) \end{array}$

- ・(,)内には、(E1,OR2)のように左側に測定信号を入力するエレメントを表す記号,右側にORのあとに次数を設定します。エレメント1をE1,エレメント2をE2,エレメント3をE3,エレメント4をE4,∑AをE5,∑BをE6という記号で表します。
 - ・ U(,)~LAMBDA(,)の()内には、E1~E6のどれかを設定できます。
 - · PHI(,)~FI()の()内には,E1~E4のどれかを設定できます。
 - PHIU1U2()~PHIU1I3()の()内には、E5またはE6のどちらかを設定できます。
 - ・()内が「,」で区切られていない演算項の場合,次数の設定は不要です。 TORQUE()だけは次数を設定してください。
- 次数の部分を「ORT」にすると全体(Tortal)を意味し、「0(ゼロ)」にすると DCを意味します。

・演算子

次の演算子の組み合わせで、演算式を設定できます。

演算子	設定例	内容
+, -, *, /	URMS(E1)+URMS(E2) U(E1,OR1)-U(E2,OR1)	指定した測定ファンクションの四則演算
ABS	$\begin{array}{l} ABS(UMN(E1) - UMN(E2))\\ ABS(P(E1,ORT) + P(E2,ORT) \end{array}$	指定した測定ファンクションの絶対値)
SQR	SQR(IDC(E1)) SQR(I(E1,0R0))	指定した測定ファンクションの2乗
SQRT	SQRT(ABS(IDC(E1))) SQRT(ABS(I(E1,OR3)))	指定した測定ファンクションの平方根
LOG	LOG(UDC(E1)) LOG(U(E1,0R25))	指定した測定ファンクションの自然対数
LOG10	LOG10(UDC(E1)) LOG10(U(E1,0R25))	指定した測定ファンクションの常用対数
EXP	EXP(UAC(E1)) EXP(U(E1,OR12))	指定した測定ファンクションの指数
NEG	NEG(URMS(E1)) NEG(U(E1,OR12))	指定した測定ファンクションにマイナス符号 付加

・演算式に使用できる文字数と種類

・文字数

- 50文字以内
- ・文字の種類

キーボードに表示されている文字とスペース

Note.

- ・ 演算式(F1~F4)の中に演算式(F1~F4)を入れることはできません。
- ・ 測定/演算区間を変更したり演算式を変更したときは、演算の再実行をしてください。測定/演算区間の変更や演算の再実行については、10.1節をご覧ください。
- 演算式中の演算項が求められていない場合,演算結果はデータなし表示[------]になります。たとえば、デルタ演算の測定ファンクションが演算式中にあるが、デルタ演算が[OFF]になっている場合や、モジュールが装着されていないエレメントの測定ファンクションが演算式中にある場合です。
- · アベレージング(10.5節参照)が[ON]のときは、ユーザー定義ファンクションをONにできません。

10.4 皮相電力とCorrected Powerの演算式を設定する

操作キー

《機能説明は1.7節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MEASUREキーを押します。Measure設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。
- 3. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。

● 皮相電力の演算式を選択する

- 4. [S Formula]のソフトキーを押します。皮相電力の演算式選択メニューが表示されます。
- 5. [Urms*Irms]~[Udc*Idc]のどれかのソフトキーを押して,皮相電力の演算式を 選択します。

	-
Measure Mode OFF DN	
Zero Cross	
a sync source	
Measure Exec	
Measure Exec A Measure OFF	
Measure Exec OFF USer Defined	

● Corrected Powerの演算式を設定する

 [Pc Formula]のソフトキーを押します。Corrected Powerの演算式設定ダイアロ グボックスが表示されます。

・適用規格を選択する

- 5. ジョグシャトルを回して, [Pc Formula]の規格を選択します。
- 6. SELECTキーを押して, [IEC76-1(1976), IEEE C57.12.90-1993]または[IEC76-1(1993)]のどちらかを選択します。
- ・係数を設定する
- (適用規格が[IEC76-1(1976), IEEE C57.12.90-1993]の演算式のときに有効です。)
- 7. ジョグシャトルを回して, [P1=]を選択します。
- 8. SELECTキーを押します。係数P1設定ボックスが表示されます。
- ジョグシャトルを回して、係数P1を設定します。
 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 10. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。
- 11. ジョグシャトルを回して, [P2=]を選択します。
- 12. SELECTキーを押します。係数P2設定ボックスが表示されます。
- 13. ジョグシャトルを回して,係数P2を設定します。 ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧く ださい。
- 14. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

Pc Formula		
Pc Formula [IEC76-1(19] P1= P2= 0.5	0.5000	

Pc Formula	
PC FO	rmula 26.1(1926) IFFF (62.12.98.1992)
	IEC76-1(1993)
P1=	_0.5000_
P2=	0.5000

解 説

通常測定モードのときの皮相電力は、電圧と電流の積で求められます。本機器で通常測 定モードのときに測定している電圧と電流には、3種類あります。3種類のうち、どの 電圧と電流の積で皮相電力を求めるかを、次の中から選択できます。

- 電圧と電流の真の実効値で皮相電力が求められます。
- Umean*****Imean

· Urms*Irms

電圧と電流の平均値整流実効値校正で皮相電力が求められます。

· Udc*****Idc

電圧と電流の単純平均で皮相電力が求められます。

● Corrected Powerの演算式の設定

適用規格によっては、変圧器に接続されている負荷が非常に小さいとき、測定された変 圧器の有効電力を補正することが定められています。その補正の演算式の選択と係数の 設定ができます。Corrected Power(Pc)は、通常測定モードのときの測定ファンクショ ンです。

・適用規格の選択

次の中から選択します。選択された適用規格によって、演算式が異なります。

· IEC76-1(1976), IEEE C57.12.90-1993

$$Pc = \frac{P}{\frac{D_1 + D_2}{\frac{Urms}{V}}}$$

 P_1+P_2 Umn / Pc : Corrected Power

P:有効電力

- Urms:真の実効値の電圧
- Umn:平均値整流実効値校正の電圧
- P1, P2:適用規格に定められている係数(次項「·係数の設定」参照)
- · IEC76-1(1993)

$$Pc=P\left(1+\frac{Umn-Urms}{Umn}\right)$$

Pc:Corrected Power P:有効電力 Urms:真の実効値の電圧 Umn:平均値整流実効値校正の電圧

・係数の設定

係数P1, P2の設定ができます。 0.0001~9.9999の範囲で設定できます。

Note .

皮相電力とCorrected Powerの演算式は,通常測定モードのときの測定ファンクションに対し て,適用されます。

10.5 アベレージングをする

操作キー

《機能説明は1.7節》

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MEASUREキーを押します。Measure設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。
- 3. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。

● アベレージングをする(ON)/しない(OFF)を選択する

4. [Averaging]のソフトキーを押して, [ON]または[OFF]のどちらかを選択します。

● 減衰定数を設定する

5. ジョグシャトルを回して、減衰定数を設定します。

解 説

設定した減衰定数で、数値データを指数化平均できます。

● アベレージングのON/OFF

設定されたアベレージングの処理を、実行するかしないかの選択ができます。

- · OFF:アベレージングをしません。
- · ON:アベレージングをします。

次の式に従ってアベレージングされます。

$$D_n = D_{n-1} + \frac{(M_n - D_{n-1})}{K}$$

Dn:n回目の指数化平均した表示値(1回目の表示値D1は, M1になります。)
 Dn-1:n-1回目の指数化平均した表示値
 Mn:n回目の測定データ
 K:減衰定数,次項「・減衰定数の設定」参照。

アベレージング処理される測定ファンクション

直接,アベレージング処理される測定ファンクションは,下記のとおりです。他の 測定ファンクションでも,下記の測定ファンクションのデータを使用して演算され ている場合には,アベレージングの影響を受けます。各測定ファンクションの求め 方の詳細は,「付録2」をご覧ください。

- 通常測定モードの場合
 Urms, Irms, Umn, Imn, Udc, Idc, P
- ・ 高調波測定モードの場合
 U(k), I(k), P(k), Q(k)
 * k:高調波の次数
- 減衰定数の設定
 - 2, 4, 8, 16, 32, 64の中から選択できます。
- Note _
 - アベレージングの影響を受けない測定ファンクションは、次のとおりです。
 - ・ 通常測定モードの場合
 - fU, fl, U+pk, U-pk, I+pk, I-pk
 - ・ 高調波測定モードの場合
 - φU(k), φI(k), φU1-U2, φU1-U3, φU1-I1, φU1-I2, φU1-I3 *k:高調波の次数
 - アベレージング中に、データの取り込みを停止したあと取り込みを再スタートさせると、継続してアベレージングされます。
 - ・ユーザー定義ファンクション(10.3節参照)が[ON]のとき、あるいは波形演算(11.2節参照)の [Mode]が[ON]で[Math1]または[Math2]のどちらかが[ON]のとき、アベレージングを[ON]に できません。

10.6 位相差の表示方式を選択する

操作キー

《機能説明は1.7節》

・操作途中で,メニューから抜け出すときは, ESCキ ーを押します。

操作

- 1. MEASUREキーを押します。Measure設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。
- 3. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。
- 4. [Phase]のソフトキーを押します。位相差の表示方式選択メニューが表示されます。
- 5. [180 Lead/Lag]または[360 degrees]のどちらかのソフトキーを押して, 位相 差の表示方式を選択します。

Measure	
Mode	
OFF DN	
Period	
Zero Cross	
Sync Source	
Measure Exec	
d Measure	
OFF	
User	
Def i ned	11 1
Next 1⁄2	

解 説

電圧と電流の位相差 φ の表示の方式を,次の中から選択できます。通常測定モードのとき に有効です。

- 180 Lead/Lag
 - 縦軸上方向を基準軸0(ゼロ)にして、反時計方向を進み(D)180°、時計方向を遅れ(G)として、180°の角度で¢を表示する方式になります。
- · 360 degrees
 - 縦軸上方向を基準軸を0(ゼロ)にして、時計方向360°の角度でφを表示する方式になり ます。

Note _

· 高調波測定モードのときは、選択した表示方式に関わらず次のようになります。

- 測定ファンクション φ()は、時計方向360°の方式で表示されます。測定ファンクション φU()と φI()は、それぞれ基本波U(1)とI(1)を基準に、反時計方向をマイナス(-)、時計方向をプラ スとして、180°の角度で表示する方式になります。
- ・電圧または電流のどちらかが測定レンジの0.25%以下のときは、エラー表示[Error]します。
- ・電圧と電流がともに正弦波で、測定レンジに対する入力の割合が電圧と電流で大きく異ならない場合に、進相(Lead)/遅相(Lag)の位相差 Φ 表示は正しく識別されます。
- ・ 力率 λ の演算結果が「1」を超えたとき、 φ を次のように表示します。
 - λが1を超えて2以下の場合、φはゼロ表示になります。
 - · λが2を超えた場合、φはエラー表示[Error]になります。

10.7 高調波の解析次数を設定する

高調波測定モードのときに適用します。

 操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

操作キー

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. MEASUREキーを押します。Measure設定メニューが表示されます。
- 3. [Mode]のソフトキーを押して, [ON]を選択します。
- 4. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。

● 解析次数の最小値を選択する

5. [Min Order]のソフトキーを押して, [0]または[1]のどちらかを選択します。

● 解析次数の最大値を設定する

6. ジョグシャトルを回して、解析次数の最大値を設定します。

Measure Mode OFF DN	
Start Pos	
10.00ms	
Exec	
◀ User Defined	
Next 1/2	

どの範囲の次数の高調波で、高調波の測定ファンクションのデータ(数値データ)を求める かの設定ができます。

● 解析次数の最小値の選択

次の中から選択できます。

- · 0
- 高調波の各数値データを求めるときに、0次(dc:直流)の成分を含めます。
- · 1

高調波の各数値データを求めるときに、0次(dc:直流)の成分を含めません。1次(基本波)成分からが、対象になります。

● 解析次数の最大値の設定

1~500次の範囲で設定できます。

Note _

- ・解析次数の最小値を[1]にすると、高調波測定データの全体(Total)を表す数値データには、直流 (dc)成分のデータは含まれません。
- 解析次数の最大値は500次まで設定できますが、数値データを求めるために対象となる次数 は、解析次数上限値までです。解析次数上限値は、PLLソースの周波数によって最大500次ま での範囲で自動的に決まります。解析次数上限値を超える次数の数値データの欄は、データな し表示[------]になります。

10.8 ひずみ率の演算式を選択する

《機能説明は1.7節》

高調波測定モードのときに適用します。

操作

測定モードを高調波測定モードにします。設定方法は、「5.1 測定モードを選択する」をご覧ください。

- 1. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 2. MEASUREキーを押します。Measure設定メニューが表示されます。
- 3. [Mode]のソフトキーを押して, [ON]を選択します。
- 4. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。
- 5. [Thd Formula]のソフトキーを押します。ひずみ率の演算式選択メニューが表示 されます。
- 6. [/Total]または[/Fundamental]のどちらかのソフトキーを押して、ひずみ率の演 算式を選択します。

	~
Measure Mode OFF DN	
Start Pos	
10.00ms Measure	
◀ User Defined	
Next 1/2	

-	~
Heasure ◀ S Formula Urms×Irms	
Averaging DFF ON → Count 16	
Min Order ◎ 1 ○ Max Order 1_	
◀ Thd Formula /Total	
Next 2/2	

解 説

高調波測定モードの測定ファンクションUhdf, Ihdf, Phdf, Uthd, Ithd, Pthdを求める とき,演算式の分母を次の中から選択できます。演算式は,「付録2」をご覧ください。

- · /Total
 - 解析次数最小値から解析次数最大値(ただし,解析次数上限値以内)までのすべての高調 波測定データが分母になります。
- · /Fundamental
 - 基本波(1次)成分のデータが分母になります。
- Note _
 - 解析次数最小値/解析次数最大値は、10.7節で選択した成分です。

11.1 演算範囲を設定する,演算を再実行する

操作キー

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

波形を表示する表示フォーマットにします。設定方法は,「9.1 表示するチャネルを 選択する」をご覧ください。

- 1. DISPLAYキーを押します。Display設定メニューが表示されます。
- 2. [Format]のソフトキーを押します。表示フォーマット選択ボックスが表示されま す。

[Format]が, [Wave], [Numeric+Wave], [Wave+Bar], [Wave+X-Y]*のどれか になっていることを確認します。

* X-Y波形の表示は、ファームウエアパージョン2.01以降の製品(PZ4000)に適用できま す。

表示フォーマットが、[Wave]のときを代表例として、以降の操作を説明します。

● 演算範囲を設定する

- 3. MATHキーを押します。Math設定メニューが表示されます。
- 4. [Mode]のソフトキーを押して, [ON]を選択します。

	<i></i>
<u>Math</u> Mode DFF ON	

11

波形解析

・開始点を設定する

- 5. [Start Point / End Point]のソフトキーを押して、ジョグシャトルの対象を, [Start Point]にします。
- 6. ジョグシャトルを回して、波形上で開始点を設定します。

・終了点を設定する

- [Start Point / End Point]のソフトキーを押して、ジョグシャトルの対象を[End Point]にします。
- 8. ジョグシャトルを回して、波形上で終了点を設定します。

・開始点/終了点を同時に設定する

- 9. [Start Point / End Point]のソフトキーを押して、ジョグシャトルの対象を、 [Start Point]と[End Point]の両方にします。
- 10 ジョグシャトルを回して、開始点と終了点の間隔を変えないで、波形演算の範囲を設定します。

	/
Math Mode OFF DN	
✓ Hath2	
 Start Point 0.00ms End Point 0.00ms 	
1000	
 FFT WINdOW Rect 	
Math Exec	

● 演算を再実行する

11. [Math Exec]のソフトキーを押します。設定された範囲で, 波形演算が実行され ます。

-	~
Math Mode OFF DN	
✓ Hath1	
◀ Math2	
 Start Point 10.00ms End Point 80.00ms 	
 FFT Points 1000 	
 FFT Window Rect 	
Math Exec	

解 説

後述(11.2節参照)の波形演算をするときの演算範囲や,FFT演算(11.3節参照)をするときの演算開始点の設定ができます。

● 波形演算モードのON/OFF

波形演算をするかしないかの選択ができます。

- · OFF
- 波形演算をしません。
- · ON
- 波形演算をします。また、波形演算の設定メニューが表示されます。
- 演算範囲の設定

画面内に置かれた2本のカーソル(開始点と終了点)に挟まれた範囲が, 波形演算範囲に なります。

- ・通常測定モードでタイムベースが内部クロックのときの開始点(1点鎖線)/終了点(破線)の移動範囲は、Os(画面左端)~観測時間(画面右端)までです。タイムベースが外部クロックまたは高調波測定モードのときの開始位置/終了位置の移動範囲は、設定レコード長分のデータポイント数になります。たとえば、設定レコード長が100kワードのときは、データポイント0(画面左端)~データポイント100k(画面右端)の範囲になります。
- ・ 通常測定モードでタイムベースが内部クロックのとき、カーソルの位置がメニュー に時間で表示されるので、波形が表示されていなくても開始点/終了点を時間で設定 できます。波形を表示できる表示フォーマットにしておくと、波形を見ながら開始 点/終了点を設定できます。
- ・通常測定モードでタイムベースが内部クロックのときの開始点/終了点の設定ステップは、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高調波測定モードのときの開始点/終了点の設定ステップは、1ポイントです。
- ・開始点と終了点の間隔を変えずに同時に移動するには、[Start Point]と[End Point] の両方が、ジョグシャトルの対象になっていることが必要です。
- 演算の再実行
 - サンプリングデータの取り込みを停止している状態で、演算範囲を変更して、演算の再実行ができます。
 - 演算波形の上限値/下限値の設定ができます。上限値/下限値を演算された波形から 自動的に決められる(オートスケーリング)場合と、あらかじめ設定した上限値/下限 にする(マニュアルスケーリング)場合の2つの方法があります。設定方法は、「11.2 演算式を設定する、演算した波形のスケール変換をする」をご覧ください。ま た、上限値/下限値を表示するか(ON)しない(OFF)かの設定もできます。表示ON/ OFFの設定は、「9.6 上下限値の表示をON/OFFする」をご覧ください。
- Note .

開始点から終了点までのデータ点数は、開始点を起点にして最大100kワードまでです。

11.2 演算式を設定する,演算した波形のスケール変換をする

操作キー

《機能説明は1.8節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MATHキーを押します。Math設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。
- 3. [Math1]または[Math2]のどちらかのソフトキーを押します。演算式設定ダイア ログボックスが表示されます。

● 演算式の演算を実行する(ON)/しない(OFF)を選択する

- 4. ジョグシャトルを回して, [Function]を選択します。
- 5. SELECTキーを押して、[ON]または[OFF]のどちらかを選択します。

● 演算式を設定する

- 6. ジョグシャトルを回して, [Expression]を選択します。
- 7. SELECTキーを押します。キーボードが表示されます。
- キーボードを操作して、演算式を設定します。
 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

● 単位を設定する

- 9. ジョグシャトルを回して, [Unit]を選択します。
- 10. SELECTキーを押します。キーボードが表示されます。
- 11. キーボードを操作して、単位を設定します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

Nath1		
Function	_DFF _ON	
Expression	TREND(C1*C2)	
Unit		
Scaling	AutoManual_	
Upper	0.0000E+00	
Lower	0.0000E+00	

Function	_DFF]_ON	
Expression	TREND(C1*C2)	
Unit	<u> </u>	
Scaling	AutoManua1_	
Upper	0.000E+00	
Lower	0.0000E+00	

● 演算した波形のスケール変換をする

オートスケーリングまたはマニュアルスケーリングのどちらかを選択する

- 12. ジョグシャトルを回して, [Scaling]を選択します。
- 13. SELECTキーを押して, [Auto]または[Manual]のどちらかを選択します。

・マニュアルスケーリングのときの上限値/下限値を設定する

- 14. ジョグシャトルを回して, [Upper]を選択します。
- 15. SELECTキーを押します。上限値設定ボックスが表示されます。
- 16. ジョグシャトルを回して、上限値を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 17. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。
- 18. ジョグシャトルを回して, [Lower]を選択します。
- 19. SELECTキーを押します。下限値設定ボックスが表示されます。
- 20. ジョグシャトルを回して、下限値を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 21. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

	Math1
Function	DFF _ON
Expression	TREND
Unit	W
Scaling	_Auto _Manua1_
Upper	0.0000E+00
Lower	0.0000E+00

	Math1
Function	DFF ON
Expression	TREND
Unit	W
Scaling	Auto Manual
Upper	0.0000E+00
Lower	0.0000E+00

Function	DFF ON
Expression	TRENI
Unit	u
Scaling	_Auto _Manual_
Upper	0.0000E+00
Lower	0.0000E+00

IM 253710-01

解説

各チャネルの記号を組み合わせて演算式を作り、作った演算式の波形を表示できます。

● 演算式の演算のON/OFF

設定した演算式の演算を実行するかしないかを選択できます。

- \cdot OFF
- 演算式の演算を実行しません。
- \cdot ON

演算式の演算を実行します。

● 演算式の設定

2つの演算式を作ることができます。1つの式内の演算項は、16項まで設定できます。

・演算対象

各チャネルCH1~CH8をC1~C8という演算項にして,設定できます。ただし, TREND(TRENDM, TRENDD, TRENDFを含む)とFFT関数の場合,C1~C8,C1 *C2,C3*C4,C5*C6,およびC7*C8のどれか1つだけを演算対象にできま す。

・演算子

次の演算子の組み合わせで,演算式を設定できます。特殊関数として,TINTG(積 分),TREND(TRENDM,TRENDD,TRENDFを含む),AVG,PMがあります。特 殊関数TINTG,TREND(TRENDM,TRENDD,TRENDFを含む),AVG,SSP, SLIP,PMの詳細な説明は,「1.8 波形解析」をご覧ください。

演算子	設定例	内容
+, -, *, /	C1+C2	指定した波形の四則演算
ABS	ABS(C1)	指定した波形の絶対値
SQR	SQR(C1)	指定した波形の2乗
SQRT	SQRT(C1)	指定した波形の平方根
LOG	LOG(C1)	指定した波形の自然対数
LOG10	LOG10(C1)	指定した波形の常用対数
EXP	EXP(C1)	指定した波形の指数
NEG	NEG(C1)	指定した波形にマイナス符号付加
DIF	DIF(C1)	指定した波形の微分
TINTG	TINTG(C1)	指定した波形の積分
TREND	TREND(C1*C2)	指定した波形のトレンド TRENDM, TRENDMD, TRENDFも同様に設定 可。詳細は1.8節参照。
AVG2	AVG2(C1*C2)	指定した波形のアベレージ,減衰定数2
AVG4	AVG4(C1*C2)	指定した波形のアベレージ,減衰定数4
AVG8	AVG8(C1*C2)	指定した波形のアベレージ,減衰定数8
AVG16	AVG16(C1*C2)	指定した波形のアベレージ,減衰定数16
AVG32	AVG32(C1*C2)	指定した波形のアベレージ,減衰定数32
AVG64	AVG64(C1*C2)	指定した波形のアベレージ,減衰定数64
SSP	SSP	同期速度の波形
SLIP	SLIP	すべりの波形
PM	PM	モータ出力の波形
FFT	FFT(C1)	指定した波形のFFT演算(11.3節参照)

関数TRENDM, TRENDD, TRENDF, SSP, SLIP, PMは, ファームウエアバージョン2.01 以降の製品(PZ4000)に適用できます。

・演算式に使用できる文字数と種類

- ・文字数
 - 50文字以内。
- ・文字の種類
 - キーボードに表示されている文字とスペース。

● 単位の設定

- ・文字数
 - 8文字以内。
- ・文字の種類
 - キーボードに表示されている文字とスペース。

● 演算した波形のスケール変換

演算した波形を表示するときの表示枠の上限値/下限値を設定できます。設定方法を次の中から選択できます。

Auto

オートスケーリングになります。演算結果の最大/最小値から、画面表示上の上下限 値を自動的に決めます。

- Manual
 - マニュアルスケーリングになります。必要に応じて,上下限値を任意に設定できま す。

マニュアルスケーリングのときの上限値/下限値の設定

-9.9999E+30~9.9999E+30の範囲で設定できます。

Note _

- モジュールが装着されていないエレメントのチャネルが演算式の演算項として設定されている 場合、その演算項は0(ゼロ)として扱われます。
- · 演算式(Math1またはMath2)の中に演算式(Math1またはMath2)を入れることはできません。
- ・ユーザー定義ファンクションの演算式の中に、Math1またはMath2の演算式を入れることはできません。
- ・ 画面の両端に表示されている1周期に満たない波形の部分のTREND(TRENDM, TRENDD, TRENDFを含む)波形は,表示されません。1周期分の波形の部分に対してTREND波形を表示します。
- ファームウエアバージョン2.01より前の製品(PZ4000)では、2*TRENDや3*FFTのように TRENDとFFT関数の結果に係数を掛けることはできません。ファームウエアバージョン2.01 以降の製品(PZ4000)では、3*FFTのようにFFT関数の結果に係数を掛けることはできません。
- 演算範囲を変更したり演算式を変更したときは、演算の再実行をしてください。演算範囲の変 更や演算の再実行については、11.1節をご覧ください。
- ・ 上限値/下限値を表示するか(ON)しない(OFF)かの設定もできます。表示ON/OFFの設定は、
 「9.6 上下限値の表示をON/OFFする」をご覧ください。
- ・タイムベースを外部クロックにした場合,または高調波測定モードの場合は,TINTG関数は1 サンプリングデータ1秒として演算します。
- アベレージング(10.5節参照)が[ON]のとき、波形演算の[Mode]を[ON]にできません。
 [Math1]や[Math2]も[ON]にできません。

11.3 FFT演算をする

操作キー

《機能説明は1.8節》

ーを押します。

操作

- 1. MATHキーを押します。Math設定メニューが表示されます。
- 2. [Mode]のソフトキーを押して, [ON]を選択します。

● 演算点数を選択する

- 3. [FFT Points]のソフトキーを押します。演算点数選択メニューが表示されます。
- 4. [1000]~[10000]のどれかのソフトキーを押して、演算点数を選択します。

● 時間窓を選択する

- 3. [FFT Window]のソフトキーを押します。時間窓選択メニューが表示されます。
- 4. [Rect]または[Hanning]のどちらかのソフトキーを押して,時間窓を選択します。

Math Mode	
OFF DN	
✓ Math1	
Start Point A AOms	
End Point 100.00ms	
♦ FFT Points 1000	
◀ FFT Window Rect	
Math Exec	

í	
Math	11
Mode	
OFF DN	
Math1	
4 Math2	
1 Incone	
Start Doint	
2m00.0	
🕙 End Point	
FFT Points	
1000	
·	
2000	
10000	
P	

解 説

FFT(高速フーリエ変換)により,電圧,電流,有効電力のパワースペクトラムを表示できます。電圧,電流,有効電力の周波数分布を確認できます。11.2節の演算式の設定のときに,たとえばFFT(C1)と設定すると,CH1のFFT演算が実行されます。FFT演算の詳細な説明は,「1.8 波形解析」をご覧ください。

● 演算対象

11.2節の演算式の設定で、各チャネルCH1~CH8をC1~C8という演算項にして、演算 式を設定できます。FFT演算の場合、C1~C8、C1*C2、C3*C4、C5*C6、および C7*C8のどれか1つだけを演算対象にできます。

● 演算点数の選択

次の中から選択できます。11.1節で設定した波形演算の開始点から選択した演算点数 で,FFT演算されます。 1000,2000,10000

●時間窓の選択

次の中から選択します。

- Rect
 - 時間窓は,矩形窓になります。窓内で完全に減衰する過渡的な信号の場合に有効で す。
- Hanning
 時間窓は、ハニング窓になります。連続的な信号に有効です。

Note _

- · 表示レコード長が演算点数未満のときは、FFT演算できません。
- ・モジュールが装着されていないエレメントのチャネルが演算式の演算項として設定されている 場合,演算結果はデータなし表示[-----]になります。
- FFTの横軸は、ナイキスト周波数といわれるモジュールのサンプルレートの半分の周波数を表示します。5MS/sで測定したときは2.5MHz、100kS/sで測定したときは50kHzの表示になります。サンプルレートの半分の周波数より高い周波数成分が入力信号に含まれると、折り返し現象が生じます。折り返し現象による表示は、実際に測定したデータではありません。ご注意ください。

11.4 カーソル測定をする

操作キー

機能説明は1.8節》

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. CURSORキーを押します。Cursor設定メニューが表示されます。
- 2. [Type]のソフトキーを押します。カーソルタイプ選択メニューが表示されます。
- [Marker]~[H & V]のどれかのソフトキーを押して、カーソルタイプを選択します。

[Marker]を選択したときは、11-11ページの操作4に進んでください。 [Horizontal]を選択したときは、11-13ページの操作4に進んでください。 [Vertical]を選択したときは、11-14ページの操作4に進んでください。 [H & V]を選択したときは、11-15ページの操作4に進んでください。

[Marker]を選択したとき

● マーカー対象波形を選択する

- ・+マーカーの対象波形を選択する
- 4. [Cursor1 Trace]のソフトキーを押します。マーカー対象波形選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [CH1]~[Math2]のどれかを選択します。
- 6. SELECTキーを押して、マーカー対象波形を確定します。

・Xマーカーの対象波形を選択する

- 7. [Cursor2 Trace]のソフトキーを押します。マーカー対象波形選択ボックスが表示されます。
- 8. ジョグシャトルを回して、[CH1]~[Math2]のどれかを選択します。
- 9. SELECTキーを押して、マーカー対象波形を確定します。

● マーカーを移動する

+マーカーを移動する

- [Cursor1 + / Cursor2 ×]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1 +]にします。
- 11. ジョグシャトルを回して、+マーカーを移動します。

×マーカーを移動する

- 12. [Cursor1 + / Cursor2 ×]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor2 ×]にします。
- 13. ジョグシャトルを回して、×マーカーを移動します。

・ +マーカーとXマーカーを同時に移動する

- 14. [Cursor1 + / Cursor2 ×]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1 +]と[Cursor2 ×]の両方にします。
- 15. ジョグシャトルを回して、+マーカーと×マーカーの間隔を変えずに、+マー カーと×マーカーを移動できます。

● マーカー(+, ×)を波形表示枠の中央にジャンプさせる

- 16. [Jump Type]のソフトキーを押します。ジャンプ選択メニューが表示されます。
- 17. [+ to Main]~[× to Z2]のどれかを押して、ジャンプさせたいマーカーとジャンプ先を選択します。
- 18. [Marker Jump]のソフトキーを押します。選択されたマーカーがジャンプ先に移 動します。

[Horizontal]を選択したとき

● Hカーソルの対象波形を選択する

- 4. [Cursor1 Trace]のソフトキーを押します。Hカーソル対象波形選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [CH1]~[Math2]のどれかを選択します。
- 6. SELECTキーを押して、Hカーソル対象波形を確定します。

●Hカーソルを移動する

・Hカーソル1を移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1 =]にします。
- 8. ジョグシャトルを回して、Hカーソル1を移動します。

・Hカーソル2を移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor2 =]にします。
- 10. ジョグシャトルを回して、Hカーソル2を移動します。

・Hカーソル1と2を同時に移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、
 [Cursor1 =]と[Cursor2 =]の両方にします。
- 12. ジョグシャトルを回して、Hカーソル1と2の間隔を変えずに、Hカーソル1と2を 移動できます。

		
	Cursor	\square
Select	I ¶ Type	
CH1	Hor izonta 1	
CH2	◀ Cursor1 Trace	
СНЗ	CH1	
CH4		
CH5		
CH6	🔿 Cursor1 🏎	
CH7	0 Cursor2 ::: 1.12	
CH8		
Math1		
MathZ		
<u> </u>		
		رك
	,	-

Cursor	
1 Igpc	
Horizontal	l J
Cursor1 Trace	
UNI	
Cursor1	
🕙 Cursor2 📰	
1.1%	
	ر

[Vertical]を選択したとき

● Vカーソルの対象波形を選択する

- 4. [Cursor1 Trace]のソフトキーを押します。Vカーソル対象波形選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [CH1]~[Math2]のどれかを選択します。
- 6. SELECTキーを押して、Vカーソル対象波形を確定します。

●Vカーソルを移動する

・Vカーソル1を移動する

- [Cursor1||/Cursor2|]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1|]にします。
- 8. ジョグシャトルを回して、Vカーソル1を移動します。

・Vカーソル2を移動する

- [Cursor1|| / Cursor2|]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor2|]にします。
- 10. ジョグシャトルを回して、Vカーソル2を移動します。

・Vカーソル1と2を同時に移動する

- 11. [Cursor1||/Cursor2|]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1|]と[Cursor2|]の両方にします。
- 12. ジョグシャトルを回して、Vカーソル1と2の間隔を変えずに、Vカーソル1と2を 移動できます。

		Cursor	
R	•Select	◀ Type	
	CH1	Vertica1	
L	CH2	◀ Cursor1 Trace	
	СНЗ	CH1	
L	CH4		
	CH5		
L	CH6	🔿 Cursori '	
	CH7	82.00ms Cursor2 ' 880.00ms	
L	CH8		
	Math1		
L	MathZ		
			I I
			رىك
		1	

(
Cursor	
 Type 	
Vertical	
Cursor1 Trace	
CH1	
Cursor1 '!!	
82.00ms	
Cursor2 [7]	
000.00013	
	1

[H & V]を選択したとき

● HとVカーソルの対象波形を選択する

- 4. [Cursor1 Trace]のソフトキーを押します。H&Vカーソル対象波形選択ボックス が表示されます。
- 5. ジョグシャトルを回して, [CH1]~[Math2]のどれかを選択します。
- 6. SELECTキーを押して、H&Vカーソル対象波形を確定します。

●Hカーソルを移動する

・Hカーソル1を移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1 =]にします。
- 8. ジョグシャトルを回して、Hカーソル1を移動します。

・Hカーソル2を移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor2 =]にします。
- 10. ジョグシャトルを回して, Hカーソル2を移動します。

・Hカーソル1と2を同時に移動する

- [Cursor1 = / Cursor2 =]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor1=]と[Cursor2=]の両方にします。
- 12. ジョグシャトルを回して、Hカーソル1と2の間隔を変えずに、Hカーソル1と2を 移動できます。

● Vカーソルを移動する

・Vカーソル1(Cursor3)を移動する

- [Cursor3 | | / Cursor4 |]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor3 |]にします。
- 14. ジョグシャトルを回して、Vカーソル1を移動します。

・Vカーソル2(Cursor4)を移動する

- [Cursor3 | | / Cursor4 |]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor4 |]にします。
- 16. ジョグシャトルを回して、Vカーソル2を移動します。

・Vカーソル1と2を同時に移動する

- [Cursor3 | | / Cursor4 |]のソフトキーを押して、ジョグシャトルの対象を、 [Cursor3 |]と[Cursor4 |]の両方にします。
- 18. ジョグシャトルを回して、Vカーソル1と2の間隔を変えずに、Vカーソル1と2を 移動できます。

表示されている波形に、マーカーやカーソルを当てて、その点の各種データを測定し表示 できます。波形各部の電圧/電流や水平軸(X軸)上のデータなどを測定できます。

● 測定対象

カーソル測定の対象波形を,次の中から選択できます。 CH1~CH8, Math1, Math2

- マーカーとカーソルの種類と測定項目
 - ・マーカー(Marker)

選択した波形上に「+マーカー」と「×マーカー」が表示されます。各マーカーの 垂直方向の値(Y軸値),画面左端からのX軸値,およびマーカー間のY軸値の差やX軸 値の差などを測定できます。波形上をマーカーが移動し,波形データの値を測定し ます。

+マーカー(Cursor1)と×マーカー(Cursor2)は、別々の波形に設定できます。

- Y+:Cursor1のY軸値
- Yx:Cursor2のY軸値
- △Y: Cursor1とCursor2のY軸値の差
- X+:Cursor1のX軸値
- Xx:Cursor2のX軸値
- △X:Cursor1とCursor2のX軸値の差
- 1/ΔX: Cursor1とCursor2のX軸値の差の逆数
- ・Hカーソル(Horizontal)

水平に2本のHカーソルが表示されます。各Hカーソルと波形の交点の垂直方向の値 (Y軸値)や,Hカーソル間のY軸値の差を測定できます。2本のHカーソルは,同じ波 形に設定されます。

- Y1:Cursor1のY軸値
- Y2:Cursor2のY軸値
- ΔY: Cursor1とCursor2のY軸値の差
- ・Vカーソル(Vertical)

垂直に2本のVカーソルが表示されます。トリガポジションから各Vカーソルまでの X軸値と、Vカーソル間のX軸値の差を測定できます。2本のVカーソルは、同じ波形 に設定されます。 X1: Cursor1のX軸値

X2:Cursor2のX軸値 ΔX:Cursor1とCursor2のX軸値の差 1/ΔX:Cursor1とCursor2のX軸値の差の逆数

・H&Vカーソル(H&V)

Hカーソル(Cursor1, Cursor2)とVカーソル(Cursor3, Cursor4)が表示されます。 各カーソルのX軸値とY軸値を測定できます。4本のカーソルは、同じ波形に設定さ れます。

- Y1:Cursor1のY軸値
- Y2:Cursor2のY軸値
- ΔY:Cursor1とCursor2のY軸値の差
- X1:Cursor3のX軸値
- X2:Cursor4のX軸値
- △X: Cursor3とCursor4のX軸値の差
- 1/ΔX: Cursor3とCursor4のX軸値の差の逆数
- Note _
 - ・ 高調波測定モードでタイムペースが内部クロックのとき、マーカーの対象としてFFT演算に 設定されているMath1またはMath2を選択した場合、水平軸の単位は周波数(Hz)になりま す。変換式は次のとおりです。
 - f[Hz]=fs×N/(Max Order) fs:サンプルレート(付録1参照),N:次数,Max Order:解 析次数の最大値(10.7節参照)
 - ・ 通常測定または高調波測定モードでタイムベースが外部クロックのとき、マーカーの対象と してFFT演算に設定されているMath1またはMath2を選択した場合、水平軸の単位は次数 (order)になります。
 - ΔY, ΔX, 1/ΔXは, Cursor1とCursor2が同じ単位(時間や周波数など)である場合に計算 されます。

- マーカーの移動範囲
 - ・ 選択した波形上を移動します。通常測定モードでタイムベースが内部クロックのときのマーカーの移動範囲は、Os(画面左端)〜観測時間(画面右端)までです。タイムベースが外部クロックまたは高調波測定モードのときのマーカーの移動範囲は、設定レコード長分のデータポイント数になります。たとえば、設定レコード長が100kワードのときは、データポイント0(画面左端)〜データポイント100k(画面右端)の範囲になります。
 - ・通常測定モードでタイムベースが内部クロックのときのマーカーの設定ステップ は、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高調波測 定モードのときのマーカーの設定ステップは、1ポイントです。
 - ・2つのマーカーの間隔を変えずに同時に移動するには、両方のマーカーが、ジョグ シャトルの対象になっていることが必要です。
 - ・同じ時間軸上に最大値と最小値の2つのデータが表示されているときは、下図のよう にサンプリング順に測定します。

● Hカーソルの移動範囲

- ・ 波形表示枠の中心を振幅ゼロラインとして、画面上端(100.0%)~画面下端 (-100.0%)の範囲です。
- · 設定ステップは、0.1%です。
- ・2つのカーソルの間隔を変えずに同時に移動するには、両方のカーソルが、ジョグ シャトルの対象になっていることが必要です。

● Vカーソルの移動範囲

- ・通常測定モードでタイムベースが内部クロックのときのVカーソルの移動範囲は、Os
 (画面左端)~観測時間(画面右端)までです。タイムベースが外部クロックまたは高調 波測定モードのときのVカーソルの移動範囲は、設定レコード長分のデータポイント 数になります。たとえば、設定レコード長が100kワードのときは、データポイント O(画面左端)~データポイント100k(画面右端)の範囲になります。
- ・通常測定モードでタイムベースが内部クロックのときのVカーソルの設定ステップ は、観測時間÷表示レコード長です。タイムベースが外部クロックまたは高調波測 定モードのときのVカーソルの設定ステップは、1ポイントです。
- ・2つのカーソルの間隔を変えずに同時に移動するには、両方のカーソルが、ジョグ シャトルの対象になっていることが必要です。

● マーカーの通常波形またはズーム波形表示枠へのジャンプ

ズーム波形表示時または表示レコード長が設定レコード長より短いときに,マーカー カーソルが波形表示枠の外にでることがあります。そのようなときに,マーカーカーソ ルの位置が波形表示枠の中央になるようにジャンプできます。 ジャンプのしかたは次のとおりです。

- + to Main:マーカー+(Cursor1)を通常波形表示枠の中央にジャンプ
- + to Z1:マーカー+(Cursor1)をZ1ズーム波形表示枠の中央にジャンプ
- + to Z2:マーカー+(Cursor1)をZ2ズーム波形表示枠の中央にジャンプ
- × to Main:マーカー×(Cursor2)を通常波形表示枠の中央にジャンプ
- × to Z1:マーカー×(Cursor2)をZ1ズーム波形表示枠の中央にジャンプ
- × to Z2:マーカー×(Cursor2)をZ2ズーム波形表示枠の中央にジャンプ

● X-Y波形のカーソル測定

- ・マーカーとカーソルの種類と測定項目は、T-Y波形(通常波形)と同じです。
- ·マーカーとHカーソルの移動範囲は、T-Y波形と同じです。
- ・ Vカーソルの移動範囲は、X-Y波形表示枠の中心をゼロとして、画面右端(100.0%)
 ~画面左端(-100.0%)の範囲です。設定ステップや2つのカーソルの移動方法は、 T-Y波形と同じです。
- X-Y波形を表示している表示フォーマット上でカーソル測定ができます。ただし、表示フォーマットが[Wave+X-Y]の場合、T-Y波形のVカーソルの単位(時間)とX-Y波形のVカーソルの単位(電圧や電流など)が異なるため、X-Y波形上のVカーソルは移動しません。
- ・X軸に割り当てられた波形トレースをマーカーの対象([Cursor1 Trace]のメニューで 設定)にしても、どのx-Y波形をマーカーが移動するかを一意的に決められないため、 マーカーは表示されません。
- X軸に割り当てられた波形トレースをHカーソルの対象([Cursor1 Trace]のメニューで設定)にしても、Y軸方向のデータがないため、カーソルは表示されません。
- X軸に割り当てられた波形トレースをVカーソルの対象([Cursor1 Trace]のメニュー で設定)にしても、Y軸方向のデータがないため、カーソルは表示されません。
- ・Vカーソルの対象波形は、X軸に割り当てられた波形トレースに固定されます。

Note .

- 数値データだけの表示中も設定できますが、T-Y波形が表示されていないため、カーソルの位置の確認ができません。T-Y波形を表示できる表示フォーマットにして、カーソルの位置を確認してください。ただしX-Y波形の場合は、T-Y波形を同時に表示するとX-Y波形上のVカーソルは移動しません。
- · モジュールが装着されていないエレメントのチャネルは、対象波形として選択できません。
- · 時間軸の測定値は、画面左端を基準にしています。
- ・ 測定不可能なデータがあるときは、測定値表示欄に「***」表示します。
- · マーカーが波形表示枠の外にあるときは、時間軸関連の値だけを表示します。

12.1 フロッピーディスクドライブの使用上の注意

使用可能なフロッピーディスク

3.5型の次のタイプのものが使用可能です。フォーマットは本機器でも可能です。

- ・2HDタイプ:1.2MBまたは1.44MBにMS-DOSでフォーマットされたもの
- ・2DDタイプ:640KBまたは720KBにMS-DOSでフォーマットされたもの

フロッピーディスクドライブへのセット方法

ラベル面を左にし、シャッタの付いた側から挿入します。イジェクトボタンが飛び出すま で挿入してください。

フロッピーディスクドライブからの取り出し方法

アクセスインジケータが消えていることを確認してから、イジェクトボタンを押します。

注 意

アクセスインジケータが点灯しているときにフロッピーディスクを取り出さない でください。フロッピーディスクドライブの磁気ヘッドが損傷したり、フロッ ピーディスク上のデータが壊れる恐れがあります。

フロッピーディスクの一般的な取り扱い上の注意

フロッピーディスクの一般的な取り扱い上の注意は、ご使用のフロッピーディスクに添付 されている取扱説明書に従ってください。

12.2 SCSIデバイスを接続する

SCSIインタフェース(オプション)の仕様

項目	仕様
インタフェース規格	SCSI(Small Computer System Interface), ANSI X3.131-1986
コネクタ形状	ハーフピッチ50ピン(ピンタイプ)
電気的仕様	シングルエンド,ピン配置は下表をご覧ください。
	ターミネータを内蔵しています。

ピンNo.	信号名	ピンNo.	信号名	 ピンNo. (+)]	
1~12	GND	38	TERMPWR			
13	NC	39, 40	GND	1	26	
14~25	GND	41	-ATN	2	27	
26	-DB0	42	GND	3	28	
27	-DB1	43	-BSY		.	
28	-DB2	44	-ACK		:	
29	-DB3	45	-RST		1:	(育囬)
30	-DB4	46	-MSG		:	
31	-DB5	47	-SEL	23	48	
32	-DB6	48	-C/D	24	49	
33	-DB7	49	-REQ	25	50	
34	-DBP	50	-I/O			
35~37	GND	_	-	_ (+)		

接続するときに必要なもの

接続ケーブル

長さ3m以下で、ケーブルの両端にフェライトコアの付いた特性インピーダンスが90~ 132Ωの市販のケーブルをご使用ください。

接続方法

- 1. 背面にあるSCSIコネクタにSCSIケーブルを接続します。
- 2. 接続したSCSIデバイスと本機器の電源を入れます。 フォーマットする場合は、「12.4 ディスクを初期化する」の操作に従ってくだ さい。

接続できるSCSIデバイス

本機器には、ほとんどのSCSIデバイス(MOディスクドライブ/ハードディスク/ZIP)を 接続できますが、一部の機種は接続できません。たとえば、本機器で選択できるパー ティションの数は10^{*1}つまでで、1パーティション(区画領域)の容量が2GBを超えない ようにパーティション数を選択する必要があります。各パーティションの合計容量が 20GB^{*2}を超える場合は、ハードディスクの初期化はできません。

接続できるかどうかの詳しい情報を記載したリーフレット7001-61 "推奨SCSI機器リ スト"を準備しています。お買い求め先か裏面に記載の当社支社・支店・営業所にお問 い合せください。

なお,接続したSCSIデバイスの一般的な取り扱い上の注意は,それらに添付されている取扱説明書に従ってください。

*1 ファームウエアバージョン2.01より前の製品(PZ4000)では、「5」です。

*2 ファームウエアバージョン2.01より前の製品(PZ4000)では、「10GB」です。

Note _

- ・ 複数のSCSIデバイスをチェーン接続する場合は、本機器から一番遠いSCSIデバイスにSCSI ターミネータを取り付けてください。
- 本機器でフォーマットしたハードディスクのデータは、NEC PC-9800シリーズでは読み出せません。

12.3 SCSI ID番号を変える

操作キー

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MISCキーを押します。Misc設定メニューが表示されます。
- 2. [SCSI ID]のソフトキーを押します。SCSI番号設定メニューが表示されます。
- 3. [Own ID]のソフトキーを押します。
- 4. ジョグシャトルを回して、[0]~[7]のどれかを選択します。
- 5. [Initialize SCSI]のソフトキーを押します。選択したID番号に変更されます。 変更中は、画面右上にのアイコンが点滅します。変更が終了するとアイコン が消えます。

IM 253710-01

解説

SCSI ID番号は、SCSIで接続された機器の識別番号のことです。接続されたすべての機器のID番号が重ならないようにしてください。SCSIインタフェースはオプションです。

● SCSI ID番号の選択範囲

Own ID(本機器のID)を0~7の範囲で選択できます。初期値は6です。

- Note _
 - · 外部のSCSIデバイスのSCSI ID番号は本機器のID番号と同じにしないでください。
 - · SCSI ID番号を変更するときは、必ず[Initialize SCSI]のソフトキーを押してください。
 - · 外部のSCSIデバイスのSCSI ID番号は、自動認識します。
- ●本機器,SCSIデバイス,およびパーソナルコンピュータをSCSI接続するときの手順
 - 本機器,SCSIデバイス,およびパーソナルコンピュータの電源スイッチがOFFで あることを確認します。
 - 2. 本機器とSCSIデバイス, SCSIデバイスとパーソナルコンピュータを, それぞれ SCSIケーブルで接続します。
 - 3. SCSIデバイスの電源スイッチをONにしてから、本機器の電源スイッチをONにします。
 - 本機器が完全に立ち上がってから、接続しているSCSIデバイスを本機器が認識することを確認します。

(Fileキー→[Utility]のソフトキー→[Function]のソフトキー→[Delete]のソフト キーを押すと、File Listダイアログボックスが表示されます。SCSIデバイスに挿 入されているメディアの名称が、File Listダイアログボックスの中に表示されて いることを確認してください。)

5. パーソナルコンピュータの電源スイッチをONにします。

Note

SCSIデバイスを経由しないで、本機器とパーソナルコンピュータをSCSIケーブルで直接接続 すると正常に動作しなくなります。ご注意ください。

● SCSI接続中に本機器で作成した新規作成ファイルについて

本機器, SCSIデバイス, およびパーソナルコンピュータをSCSI接続中に, 本機器で SCSIデバイス上にファイルを新規作成すると, パーソナルコンピュータでそのファイ ルを認識できない場合があります。そのときは, 上記の「●本機器, SCSIデバイス, およびパーソナルコンピュータをSCSI接続するときの手順」に従って接続し直してく ださい。

ただし、パーソナルコンピュータのOSがWindows95/98の場合には、次の手順でその ファイルを認識できるようになります。

- Windows95/98上で,接続しているドライブの[プロパティ]の[設定]で,[リムー パブル^{*}]をチェックします。
 - * [マイコンピュータ]→[コントロールパネル]→[システム]→[デバイスマネージャ]→[ディ スクドライブ]の順に選択し(開き)ます。[ディスクドライブ]を開いたときに表示される ドライブのリストから,接続しているドライブを選択します。選択したドライブの[プロ パティ]を開き,[設定]タブを選択すると,[リムーバブル]のチェックボックスがあるダ イアログボックスが表示されます。なお,そのダイアログボックスの[現在のドライブ] には,選択したドライブのドライブレターが表示されています。
- 2. パーソナルコンピュータを再起動します。
- 本機器でファイルを新規作成したあと、パーソナルコンピュータ上のエクスプローラなどで「最新の情報に更新」を選択します。

12.4 ディスクを初期化(フォーマット)する

操作キー

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [Utility]のソフトキーを押します。Utility設定メニューとFile Listダイアログボック スが表示されます。
- 3. [Function]のソフトキーを押します。ファイル機能選択メニューが表示されます。

	7
File File_Item Setup	
◀ Load	
◀ Save	
	$\ \Box$
◀ Utility	

12

● 初期化対象のメディアを選択する

- 4. [Format]のソフトキーを押します。File Listダイアログボックスにメディアリストが表示されます。
- ジョグシャトルを回して、初期化をしようとするメディアを選択します。
 外部にSCSIデバイスが認識されていないときで、フロッピーディスクだけが挿入されている場合は、[FD0]だけが表示されます。

rurmat		1ST	rile L	
 Function 		Space	Size	File Name
Format		1348096 2012315648	1457664 2146009088	FD0 SC0
◀ Medía Info				
◀ Format				

● フロッピーディスクの初期化形式を選択する

- 6. [Format]のソフトキーを押します。初期化形式選択メニューが表示されます。
- 7. ジョグシャトルを回して、[2DD 640K]~[2HD 1.44M]のどれかを選択します。

7____

操作9に進みます。

	1
Format Function Format	
◀ Medía Info	
Format	

Format Function Format	
¶ Medía Info	
Format	
 FD Format 2HD 1.44M 	
Format Exec	

● SCSIデバイスの初期化形式を選択する

- 6. [Format]のソフトキーを押します。初期化形式選択メニューが表示されます。
- ・パーティション数を選択する
- ジョグシャトルを回して、[1]~[10]*のどれかを選択します。
 * ファームウエアバージョン2.01より前の製品(PZ4000)では、「5」です。

・初期化方法を選択する

8. [Format Type]のソフトキーを押して, [Normal]または[Quick]のどちらかを選択 します。

● 初期化を実行する(OK)/中止する(Cancel)

- 9. [Format Exec]のソフトキーを押します。Alertダイアログボックスが表示されます。
- 10. ジョグシャトルを回して, [OK]または[Cancel]を選択します。
- [OK]を選択してSELECTキーを押すと、初期化が実行されます。
 [Cancel]を選択してSELECTキーを押すと、初期化しません。

Really FDO will be formatted by 2HD 1.44M format.	A1	ert
FD0 will be formatted by 2HD 1.44M format.	Rea	11y
FD0 will be formatted by 2HD 1.44M format.		
	FD0 will be formatted	by 2HD 1.44M format.
OK Cance1	ОК	Cance 1

12

- メディアの情報を見る
 - 6. [Media Info]のソフトキーを押します。操作5で選択されているメディアの情報が 表示されます。

- アクセスインジケータまたは
 が点滅中は、メディア(ディスク)を取り出したり、電源をOFFにしないでください。メディアが損傷したり、メディア上のデータが壊れる恐れがあります。
- ●初期化済みのメディアが本機器で認識できないときは、本機器でメディアを初期 化し直してください。なお、初期化をするとすべてのデータが消去されます。必要なデータは、バックアップしてください。

● フロッピーディスクの初期化

新しいフロッピーディスクを使うときは、初期化(フォーマット)する必要があります。 使用するフロッピーディスクに合った初期化形式を次の中から選びます。

- · 2DD 640K
- 2DDのフロッピーディスクを640Kバイト/8セクタで初期化します。
- · 2DD 720K
 - 2DDのフロッピーディスクを720Kバイト/9セクタで初期化します。
- · 2HD 1.2M
- 2HDのフロッピーディスクを1.2Mバイト/8セクタで初期化します。
- ・ 2HD 1.44M
 2HDのフロッピーディスクを1.44Mバイト/18セクタで初期化します。

● ディスクの初期化

SCSIインタフェース(オプション)で接続したディスクの初期化形式は、次のとおりです。

- · MO/PD
- セミIBMフォーマット。リムーバブルディスクとして扱われます。
- · ZIP/JAZ
 - ハードディスクフォーマット。固定ディスクとして扱われます。

● ハードディスクの初期化

IBM互換フォーマットです。

● 初期化方法の選択

外部のSCSIデバイスの初期化をするときは、初期化の方法を次の中から選択できます。

- Normal
 - 物理フォーマットと論理フォーマットの両方をします。
- Quick

論理フォーマットだけをします。

初期化にかかる時間の目安は、次のとおりです(SCSIデバイスによって、初期化の時間 が異なります)。

メディア	Normal	Quick
MO(128Mパイト) MO(230Mパイト)	約10分 約10分	約15秒 約15秒
外部のHDD(1Gバイト)	約20分	約15秒

- パーティション数の選択
 - ・外部のハードディスクをいくつかのパーティション(区画領域)に分割して使用できます。
 - パーティション数は1~10^{*}の範囲で選択できます。パーティション数を「2」にした場合は、「SCO」、「SC1」という2つの記憶領域に分割されます。
 * ファームウエアバージョン2.01より前の製品(PZ4000)では、「5」です。
 - 大容量のハードディスクをフォーマットするときは、1パーティションの容量が2GB
 を超えないようにパーティション数を選択してください。
 - ・各パーティションの合計容量が20GB*を超える場合は、ハードディスクの初期化は できません。
 - * ファームウエアバージョン2.01より前の製品(PZ4000)では、「10GB」です。
 - ・パーティション数の選択は、ハードディスク以外の記憶媒体のときには無効です。 1パーティションとして扱われます。
- メディアの情報

選択したメディアの情報を一覧表示します。

- · Media Name : メディアの名前
- ・Media Size : 総容量
- Used Space : 使用領域のサイズ
- Vacant Space : 使用可能領域のサイズ
- · Partition Size : パーティション数

すでにMS-DOSフォーマットで初期化されているフロッピーディスクを挿入した状態で、[Media Info]のソフトキーを押すと、そのフロッピーディスクのメディアの情報を 表示します。

Note .

- すでにデータが記憶されているメディアを初期化すると、記憶されていたデータはすべて消失します。ご注意ください。
- ・フロッピーディスクの初期化に要する時間は、約1分半です。
- · フロッピーディスクが書き込み禁止になっていると、初期化できません。
- 本機器とパーソナルコンピュータをSCSIケーブルで接続した状態で、絶対に初期化をしないでください。
- ・本節記載のフォーマット形式以外で初期化されたフロッピーディスクは、使用できません。
- 初期化動作終了後にエラーメッセージが表示されたときは、フロッピーディスクが損傷している可能性があります。
- ・パーソナルコンピュータなどで、MS-DOSフォーマットで初期化されたフロッピーディスクも 使用できます。
- Quick(論理)フォーマットは、ディレクトリエントリやFAT等のクリア(いわゆる初期化)だけをしています。もし不良トラックのチェックが必要な場合は、物理フォーマット(Normal)をしてください。
- ・不良トラックがある状態で、外部のSCSIデバイスに書き込みをした場合、アクセスエラー(604 Media failure)が発生し、それ以上の書き込みができなくなってしまう恐れがあります。購入 後、初めてメディアを使用する場合や読み書きできなくなってしまったメディアの場合は [Normal]、今まで使用していて初期化して使いたい場合は[Quick]というように、使い分けられ ることをおすすめします。
- ・ファームウエアバージョン2.01以降の製品(PZ4000)では、DVD-RAMのQuickフォーマットが できます。物理フォーマット(Normal)はできません。

12.5 設定情報を保存する/読み込む

操作キー

し、操作するキーを示します。
 ・操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [File Item]のソフトキーを押します。File Item設定メニューが表示されます。
- 3. [Setup]のソフトキーを押して,設定情報を選択します。

	~
File ◀ File Iten Setup	
◀ Load	
◀ Save	
Utility	

	10
File Item	
Setup	
Wave	
Numeric	
Load	
◀ Save	
	$\ $
◀ Utility	$\ \Box$

設定情報を保存する

- 4. [Save]のソフトキーを押します。保存設定メニューが表示されます。
- 保存先のメディアを選択する
 - 5. [File List]のソフトキーを押します。File Listダイアログボックスが表示されま す。
 - 6. ジョグシャトルを回して,保存先のメディア([]で表示)を選択します。
 - 7. SELECTキーを押して、メディアを確定します。

● 保存先のディレクトリを選択する

- (メディアにディレクトリがある場合に操作してください。)
- 8. ジョグシャトルを回して、保存先のディレクトリ(< >で表示)を選択します。
- 9. SELECTキーを押して、ディレクトリを確定します。

File Listダイアログボックスの左上の[Path=.....]に, 選択したメディア/ディレクトリが表示されます。

_Path = SC0 _Space 2012315648	File	List	
File Name	Size_	Date	Attribute
[FD0] [SC0] (DIR1 > (PZ >	0 0	1999-01.01 00:52 1999-01./13 09:54	R-W R-W

●保存するファイル名/コメントを設定する

- 10. [File Name]のソフトキーを押します。ファイル名設定ダイアログボックスが表示 されます。
- 11. ジョグシャトルを回して, [Auto Naming]を選択します。
- 12. SELECTキーを押して、[ON]または[OFF]のどちらかを選択します。
- 13. ジョグシャトルを回して, [Flle Name]を選択します。
- 14. SELECTキーを押します。キーボードが表示されます。
- 15. キーボードを操作して、ファイル名を入力します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。
- +----トロ操作については、「4.1 数値や文字列を入力する」をと見くたさい。 16. [Comment]も同様にして入力します。
- 17. ESCキーを押して,ファイル名設定ダイアログボックスを閉じます。

12

- 保存を実行する
 - 18. [Save Exec]のソフトキーを押します。[Path=.....]に表示されたディレクトリへの保存が実行されます。同時に[Save Exec]ソフトキーの名称が, [Abort]に変わります。
- 保存を中止する
 - 19. [Abort]のソフトキーを押します。保存が中止されます。同時に[Abort]ソフト キーの名称が, [Save Exec]に変わります。

● File Listダイアログボックスに表示するファイルを指定する

10. [Filter]のソフトキーを押して, [ltem]または[All]のどちらかを選択します。

● プロパティを見る

- 10. File Listダイアログボックスで、ジョグシャトルを回して、ファイルを選択しま す。
- 11. [Property]のソフトキーを押します。ファイルのプロパティウインドウが表示されます。
- 12. ESCキーを押して,ファイルのプロパティウインドウを閉じます。

設定情報を読み込む

- 4. [Load]のソフトキーを押します。読み込み設定メニューとFile Listダイアログ ボックスが表示されます。
- 読み込み元のメディアを選択する
 - 5. ジョグシャトルを回して, 読み込み元のメディア([]で表示)を選択します。
 - 6. SELECTキーを押して、メディアを確定します。
- 読み込み元のディレクトリを選択する
 - (メディアにディレクトリがある場合に操作してください。)
 - 7. ジョグシャトルを回して,読み込みを元のディレクトリ(< >で表示)を選択しま す。
 - 8. SELECTキーを押して、ディレクトリを確定します。

File Listダイアログボックスの左上に表示される[Path=.....]が, 選択したメディア/ディレクトリ名になります。

File ◀ File Item Setup	
Load	
◀ Save	
◀ Utility	

_Path = FD0	File	List	
Space 1192448 byte File Name	_Size_	Date	_Attribute
IFD0 1 ISC0 1 SETUP000.SET	8825	1999/01/03 17:31	R∕N

- 読み込みをするファイルを選択する
 - 9. ジョグシャトルを回して、ファイルを選択します。
- 読み込みを実行する
 - 10. [Load Exec]のソフトキーを押します。[Path=.....]に表示されたディレクトリから,選択したファイルの読み込みが実行されます。同時に[Load Exec]ソフトキーの名称が, [Abort]に変わります。
- 読み込みを中止する
 - 11 [Abort]のソフトキーを押します。読み込みが中止されます。同時に[Abort]ソフトキーの名称が, [Load Exec]に変わります。

Load Menu	
• Property	
Filter Iten All	
Load Exec	

● File Listダイアログボックスに表示するファイルを指定する

12-12ページの「●File Listダイアログボックスに表示するファイルを指定する」と同じ操作です。

● プロパティを見る

12-12ページの「●プロパティを見る」と同じ操作です。

注 意

アクセスインジケータまたは ○ が点滅中は,メディア(ディスク)を取り出した り,電源をOFFにしないでください。メディアが損傷したり,メディア上のデー タが壊れる恐れがあります。

● 保存対象の設定情報

保存時の各キーの設定情報を保存できます。ただし、日付・時刻、通信、SCSI ID番号の設定情報は保存しません。

● メディアとディレクトリの選択

保存/読み込み可能なメディアをFile Listダイアログボックスに表示します。

メディアの表示例

[FD0]:フロッピーディスク
 [SC5]:ID番号が5のSCSIデバイス
 [SC5_1]:ID番号が5のSCSIデバイスのパーティション1

● データサイズ

1つの設定情報のデータサイズ(容量)は、約20Kバイトです。

● ファイル名/コメント

- ・ファイル名は必ず付ける必要があります。コメントは付けなくてもかまいません。
- ・同じディレクトリの中で、すでに使用されているファイル名での保存はできません (上書き禁止)。

使用できる文字数と種類

設定内容	文字数	使用できる文字
ファイル名	1~8文字	0~9, A~Z, %, _, ()(カッコ), -(マイナス)
コメント	0~25文字	すべての文字(スペース含む)

● 拡張子

拡張子.SETが,自動的に付きます。

● オートネーミング機能

「Auto Naming」をONにすると、データを保存するときに、自動的に「000」から 「999」までの3桁の番号が付いたファイルを作成します。その番号の前に共通名(最大 5文字, Filenameで指定)を付けられます。

- File Listダイアログボックスに表示するファイルの指定
 - 表示するファイルの種類を指定できます。
 - Item
 - 設定情報(Setup)ファイルだけを表示します。
 - · All
 - メディア内のすべてのファイルを表示します。
- プロパティ

選択したファイルのファイル名.拡張子,ファイルの容量,保存した日付,属性,コメ ントを表示します。

- Note .
 - · データ取り込み中(START/STOPインジケータが点灯)は、保存/読み込みできません。
 - パーソナルコンピュータなどで、拡張子を違うものに変更すると、読み込みできなくなります。
 - · [Path]に表示できる文字列の長さは36文字までです。
 - ファイル名の場合、大文字と小文字の区別はありません。コメントは区別します。また、MS-DOSの制限により、次の5つのファイル名は使用できません。
 AUX、CON、PRN、NUL、CLOCK
 - ・ GP-IB/シリアルインタフェースのコマンドを使ってファイル名を入力するときは、本機器の キーボードにはない以下の記号も使用できます。
 - { }
 - ファイルに保存されている設定情報を読み込むと、各キーの設定情報が、読み込まれた設定情報に変わり、元に戻せません。読み込みをする前に、現状の設定情報を保存してから、ファイルに保存されている設定情報を読み込まれることをおすすめします。
 - ・ 日付・時刻,通信,SCSIID番号の設定情報は保存されません。したがって、ファイルに保存 されている設定情報を読み込んでも、日付・時刻,通信,SCSIID番号の設定情報は変わりま せん。
 - ・レコード長やモジュール構成が保存時と異なる場合、またはデータの互換性がないバージョンのファームウエアで保存した場合、設定情報を読み込めません。

12.6 波形データを保存する/読み込む

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [File Item]のソフトキーを押します。File Item設定メニューが表示されます。
- 3. [Wave]のソフトキーを押して, 波形データを選択します。

File File_Item Setup		
◀ Load		
◀ Sa∪e		
◀ Utility		
	11	

	10
File Item	$\ $
Setup	
Wave	
Numeric	
4 Load	
◀ Save	
	$\ \Box$
¶ Utility	$\ \Box$

波形データを保存する

● データタイプを選択する

- 4. [Data Type]のソフトキーを押します。データタイプ選択メニューが表示されま す。
- [Binary]~[Float]のどれかのソフトキーを押して、データタイプを選択します。 5. * [Binary]で保存したデータだけが、後述の本機器に読み込むときの対象のデータになり ます。

● 保存する波形を選択する

操作5で[Float]を選択したときだけ、[CH1]~[Math2]の波形選択メニューが表示されま す。(データタイプが[Binary]と[ASCII]の場合は、画面に表示されている波形が保存され ます。)

- [Save]のソフトキーを押します。保存設定メニューが表示されます。 6.
- 7. [Trace]のソフトキーを押します。波形選択メニューが表示されます。
- 8. [CH1]~[Math2]のどれかのソフトキーを押して,保存する波形を選択します。

[Float]のときだけ

- 波形の保存範囲を選択する
 - 9. [Range]のソフトキーを押します。保存範囲選択メニューが表示されます。
 - 10. [Main]~[Z2]のどれかのソフトキーを押して,波形の保存範囲を選択します。
 - * [Main]で保存したデータだけが、後述の本機器に読み込むときの対象のデータになりま す。

- 保存先のメディア/ディレクトリを選択する
 - 11. 12.5節の「●保存先のメディアを選択する」「●保存先のディレクトリを選択す る」と同じ操作です。
- 保存するファイル名/コメントを設定する
 - 12. 12.5節の「●保存するファイル名/コメントを設定する」と同じ操作です。

● 保存を実行する

13. [Save Exec]のソフトキーを押します。[Path=.....]に表示されたディレクトリへの保存が実行されます。同時に[Save Exec]ソフトキーの名称が, [Abort]に変わります。

● 保存を中止する

14. [Abort]のソフトキーを押します。保存が中止されます。同時に[Abort]ソフト キーの名称が、[Save Exec]に変わります。

● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る
 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパティを見る」と同じ操作です。

波形データを読み込む

データタイプを[Binary]にします。設定方法は、「波形データを保存する」の操作4,5 をご覧ください。

- 4. [Data Type]が, [Binary]になっていることを確認します。
- 5. [Load]のソフトキーを押します。読み込み設定メニューとFile Listダイアログ ボックスが表示されます。

- 読み込み元のメディア/ディレクトリを選択する
 - 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- 読み込みをするファイルを選択する
 - 7. ジョグシャトルを回して、ファイルを選択します。
- 読み込みを実行する
 - 8. [Load Exec]のソフトキーを押します。[Path=.....]に表示されたディレクトリから, 選択したファイルの読み込みが実行されます。同時に[Load Exec]ソフト キーの名称が, [Abort]に変わります。
- 読み込みを中止する
 - 9. [Abort]のソフトキーを押します。読み込みが中止されます。同時に[Abort]ソフトキーの名称が, [Load Exec]に変わります。

 ● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパ ティを見る」と同じ操作です。 12

アクセスインジケータまたは が 点滅中は,メディア(ディスク)を取り出した り,電源をOFFにしないでください。メディアが損傷したり,メディア上のデー タが壊れる恐れがあります。

- データタイプの選択, 拡張子, データサイズ
 - データのタイプを次の中から選択できます。拡張子は自動的に付きます。
 - Binary
 - アクイジションメモリに取り込まれたサンプリングデータが、バイナリ形式で保存されます。
 - ・後述の「●波形の保存範囲の選択」で[Main]を選択して保存されたデータを本機 器に読み込んで、波形を表示したり数値データを求めることができます。
 - パーソナルコンピュータで波形を解析するときに利用するヘッダファイルが、自動的に作成されます。ヘッダファイルを本機器で開くことはできません。ヘッダファイルフォーマットについては、「付録5 ASCIIヘッダファイルフォーマット」をご覧ください。
 - · ASCII
 - ・アクイジションメモリに取り込まれたサンプリングデータが、ASCII形式で保存 されます。パーソナルコンピュータで波形を解析するときに使用できます。
 - 本機器に読み込むことはできません。
 - Float
 - アクイジションメモリに取り込まれたサンプリングデータが、32ビットのフロー ティング形式で保存されます。パーソナルコンピュータで波形を解析するときに 使用できます。
 - ・本機器に読み込むことはできません。

データサイズ

・通常測定モードのとき

レコード長100kワード、観測期間100ms, CH1~CH8の波形データを保存, MATH1とMATH2をOFFの条件で次のようになります。

データタイプ	拡張子	データサイズ(バイト)
Binary	.WVF	約1.7M(100kワード×8チャネル×2)
	.HDR	約7K(Math1とMath2がONの場合,約8K)
ASCII	.CSV	約9M(入力信号の状態によって変わります。)
		所要時間は数十分かかります。
Float	.FLD	約400K(100k×4)

・高調波測定モード

通常測定モードと同じです。

- 保存対象の波形
 - データタイプが[Binary]と[ASCII]の場合は、画面に表示されている波形が保存されます。
 - ・データタイプが[Float]の場合は、CH1~CH8、Math1およびMath2のうち、選択した波形を保存できます。
 - ・保存される波形の垂直軸、水平軸、トリガの設定情報も保存されます。
 - ・ 演算結果を再現するには、全チャネルの[Binary]データが必要です。全チャネルを表示ONにした状態で保存してください。

● 波形の保存範囲の選択

波形の保存範囲(領域)を,次の中から選択できます。前述の「●データタイプの選択, 拡張子,データサイズ」で[Binary]を選択し,さらに,ここで[Main]を選択して保存し たデータだけが,本機器に読み込めます。

- Main
 - 通常波形の範囲です。表示レコード長分(画面に表示されている範囲)になります。
- Z1
- ズーム波形Z1の範囲です。
- Z2

ズーム波形Z2の範囲です。

● メディアとディレクトリの選択

12.5節の解説「●メディアとディレクトリの選択」と同じです。

● ファイル名/コメント

12.5節の解説「●ファイル名/コメント」と同じです。

● オートネーミング機能

12.5節の解説「●オートネーミング機能」と同じです。

- Item
 - 波形データ(Binary, ASCII, またはFloatのどれか)ファイルだけを表示します。
- · All

メディア内のすべてのファイルを表示します。

● プロパティ

12.5節の解説「●プロパティ」と同じです。

- · データ取り込み中(START/STOPインジケータが点灯)は,保存/読み込みできません。
- パーソナルコンピュータなどで、拡張子を違うものに変更すると、読み込みできなくなります。
- · [Path]に表示できる文字列の長さは36文字までです。
- ファイル名の場合、大文字と小文字の区別はありません。コメントは区別します。また、MS-DOSの制限により、次の5つのファイル名は使用できません。
 AUX、CON、PRN、NUL、CLOCK
- ファイルに保存されている波形データを読み込むと、本機器のアクイジションメモリのデータが、読み込まれた波形データに変わり、元に戻せません。読み込みをする前に、現状の波形データを保存してから、ファイルに保存されている波形データを読み込まれることをおすすめします。
- ・ 波形の保存範囲が[Z1]または[Z2]のときは、データタイプが[Binary]でも本機器に読み込むこ とができません。
- ・同じPZ4000の機器でも、データを保存した機器以外の機器で保存したデータを読み込んだ場合、正確に再演算できない場合があります。
- ・レコード長やモジュール構成が保存時と異なる場合、またはデータの互換性がないバージョンのファームウエアで保存した場合、波形データを読み込めません。

12

[●] File Listダイアログボックスに表示するファイルの指定

表示するファイルの種類を指定できます。

Note _

12.7 数値データを保存する

操作キー

ーを押します。

操 作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [File Item]のソフトキーを押します。File Item設定メニューが表示されます。
- З. [Numeric]のソフトキーを押して、数値データを選択します。

-	7
File ◀ File Item Setup	
◀ Load	
◀ Save	
◀ Utility	

- データタイプを選択する
 - 4. [Data Type]のソフトキーを押します。データタイプ選択メニューが表示されます。
 - 5. [ASCII]または[Float]のどちらかのソフトキーを押して、データタイプを選択します。

● 保存する数値データを選択する

(測定モードが高調波モードのときにメニューが表示され選択できます。通常測定モードのときは、操作14に進んでください。測定モードの設定方法は、「5.1 測定モードを設定する」をご覧ください。)

- 6. SETUPキーを押します。Setup設定メニューが表示されます。[Mode]が, [Harmonics]になっていることを確認します。
- 7. FILEキーを押します。File設定メニューが表示されます。
- 8. [List Item]のソフトキーを押します。数値データ選択ダイアログボックスが表示 されます。

・エレメントを選択する

- 9. ジョグシャトルを回して, [Element1]~[Element4]の中から, 設定しようとする エレメントを選択します。モータモジュールがエレメント番号4のスロットに装 着されているときは, [Element4]は選択できません。
- SELECTキーを押します。数値データ選択ダイアログボックスのエレメントの左 にあるボタンが強調表示されると、そのエレメントの数値データが保存の対象に なります。エレメントの左にあるボタンの強調表示が解除されると、そのエレメ ントの数値データは保存の対象になりません。

・測定ファンクションを選択する

- ジョグシャトルを回して、[U]~[∑ List]の中から、保存しようとする測定ファン クションを選択します。モータモジュールがエレメント番号4のスロットに装着 されているときは、[Torque]も選択できます。
- 12. SELECTキーを押します。数値データ選択ダイアログボックスの測定ファンクションの左にあるボタンが強調表示されると、その測定ファンクションの数値データが保存の対象になります。測定ファンクションの左にあるボタンの強調表示が解除されると、その測定ファンクションの数値データは保存の対象になりません。

操作9~10の操作で強調表示されたエレメントで,操作11~12の操作で強調表示 された測定ファンクションの数値データが保存されます。

13. ESCキーを押して、数値データ選択ダイアログボックスを閉じます。

		_List Item		
Element Function	€ Element € U ○ Q ○ ¢I ○ Rp	$\begin{array}{c c} 1 & \text{Element} \\ \hline 0 & I \\ \hline 0 & \lambda \\ \hline 0 & Z \\ \hline 0 & Xp \end{array}$	20 Element 0 p 0 ϕ 0 RS 0 Σ List	30 Element 4 0 S 0 ØU 0 XS

● 保存設定メニューを表示する

14. [Save]のソフトキーを押して,保存設定メニューを表示します。

- 保存先のメディア/ディレクトリを選択する
 - 15. 12.5節の「●保存先のメディアを選択する」「●保存先のディレクトリを選択す る」と同じ操作です。
- 保存するファイル名/コメントを設定する
 - 16. 12.5節の「●保存するファイル名/コメントを設定する」と同じ操作です。
- 保存を実行する
 - 17. [Save Exec]のソフトキーを押します。[Path=.....]に表示されたディレクトリへの保存が実行されます。同時に[Save Exec]ソフトキーの名称が, [Abort]に変わります。
- 保存を中止する
 - 18. [Abort]のソフトキーを押します。保存が中止されます。同時に[Abort]ソフト キーの名称が, [Save Exec]に変わります。

					7-
Path = FD0	File List			Save Menu	
	Size	Date	_Attribute	↓ File Name	
				NUM	
				◀ Property	
				Filter Iten All	
				Save Exec	

- File Listダイアログボックスに表示するファイルを指定する、プロパティを見る 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパ
 - TZ.5000「●FILE LISISY「アロシホッジスに表示するファイルを指定する」「●フロハ ティを見る」と同じ操作です。

解 説

演算区間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧 ください。A, Bという結線方式については、「5.2 結線方式を選択する」をご覧くだ さい。

・通常測定モードの場合

全測定ファンクションのデータが保存されます。。デルタ演算やユーザー定義ファ ンクションの数値データも保存されます。

- ・高調波測定モードの場合
 - ・ 選択したエレメントと測定ファンクションのデータが、全体(Total)またはdc(0次)から500次までの範囲で保存されます。
 - ・エレメントは, [Element1], [Element2], [Element3], [Element4]の中から 選択できます。
 - ・測定ファンクションは、U, I, P, S, Q, λ , ϕ , ϕ U, ϕ I, Z, Rs, Xs, Rp, Xp, Torque^{*}, Σ List(Σ ファンクションすべて)の中から選択できます。
 - * ファームウエアバージョン2.01以降の製品(PZ4000)で,モータモジュールがエレメ ント番号4のスロットに装着されているときに適用できます。
 - fU(またはfl), Uthd, Ithd, Pthd, Uthf, Ithf, Utif, Itif, hvf, hcfの測定ファン クションのデータは、前項の測定ファンクションの選択に関係なく、必ず保存されます。

● メディアとディレクトリの選択 12.5節の解説「●メディアとディレクトリの選択」と同じです。

● ファイル名/コメント

12.5節の解説「●ファイル名/コメント」と同じです。

● オートネーミング機能

12.5節の解説「●オートネーミング機能」と同じです。

● File Listダイアログボックスに表示するファイルの指定

表示するファイルの種類を指定できます。

- · Item
- 数値データ(Numeric)ファイルだけを表示します。
- ·A∥
- メディア内のすべてのファイルを表示します。

● プロパティ

12.5節の解説「●プロパティ」と同じです。

Note .

- · データ取り込み中(START/STOPインジケータが点灯)は、保存できません。
- ・表示される測定ファンクションの各記号の意味については、「1.2 測定モードと測定/演算区
 間」「1.7 数値演算」「付録2 測定ファンクションの記号と求め方」をご覧ください。
- · A, Bという結線方式については、「5.2 結線方式を選択する」をご覧ください。
- ・ 測定ファンクションが選択されていない,または数値データが無いところは,下記のデータが 保存されます。
 - · ASCIIファイルの場合: 「NAN」という文字列
 - ・Floatファイルの場合:0x7FC00000
- パーソナルコンピュータなどで、拡張子を違うものに変更すると、読み込みできなくなります。
- · [Path]に表示できる文字列の長さは36文字までです。
- ファイル名の場合、大文字と小文字の区別はありません。コメントは区別します。また、MS-DOSの制限により、次の5つのファイル名は使用できません。
 AUX、CON、PRN、NUL、CLOCK
- ・GP-IB/シリアルインタフェースのコマンドを使ってファイル名を入力するときは、本機器の キーボードにはない以下の記号も使用できます。
- { }

データの保存と読み込み

12.8 ファイルの属性を変える、ファイルを消去する

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [Utility]のソフトキーを押します。Utility設定メニューとFile Listウインドウが表示 されます。
- 3. [Function]のソフトキーを押します。ファイル機能選択メニューが表示されます。
- 4. [Delete]のソフトキーを押します。消去設定メニューが表示されます。

- ●メディア/ディレクトリを選択する
 - 5. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- ファイルの属性を変える
 - 6. ジョグシャトルを回して、ファイルを選択します。
 - [Attribute]のソフトキーを押します。選択されたファイルの属性が、[R]または [R/W]に変わります。

● 消去するファイルを1ずつ選択する

- 8. ジョグシャトルを回して、ファイルを選択します。
- [Set/Reset]のソフトキーを押します。File Listウインドウのファイル名の左に
 [*]が表示されると、そのファイルが削除の対象になります。ファイル名の左の
 [*]が消えると、そのファイルは削除の対象になりません。

操作11に進みます。

Space 2012	315648	bute		
File Name		Size		
				(^
LFDØ 1				
[SC0]				
<	>	0	1999/01/13 09:54	R∕⊌
* B	.HDR	6330	1999/01/08 05:27	R∕⊌
в	. UVF	1617305	1999/01/08 05:27	B∕W
c	HDB	6330	1999/01/10 03:47	B∕W
č	LUF	1612305	1999/01/10 03:42	B∕⊌
ň	HDR	5286	1999/01/10 04:15	R/M
ñ	HUF	1416305	1999/01/10 04:15	R/M
NUMEROOD	0.080	4319	1999/01/03 17:46	RAL
HOLEGOO		6330	1999 01 03 17:40	D D
WHOLOGO	.1105	0550	1999/01/03 17:3	. n
NUCEOOO	. WOL	26681	1999/01/03 17:35	K∕W

12
● 消去するファイルを一括して選択する

- 8. ジョグシャトルを回して、ファイル、ディレクトリ、またはメディアを選択しま す。
- [All Set]のソフトキーを押します。選択したファイルが含まれているディレクト 9. リとディレクトリのすべてのファイル、選択したディレクトリとディレクトリの すべてのファイル、または選択したメディアのディレクトリとすべてのファイル の左に「*」が表示され、削除の対象になります。同時に「All Set]ソフトキーの名称 が、[All Reset]に変わります。
- 10. [All Reset]のソフトキーを押します。選択したファイルが含まれているディレク トリとディレクトリのすべてのファイル、選択したディレクトリとディレクトリ のすべてのファイル、または選択したメディアのディレクトリとすべてのファイ ルの左の「*」が消え、削除の対象になりません。同時に「All Reset]ソフトキーの 名称が、[All Set]に変わります。

● 消去を実行する

11. [Delete Exec]のソフトキーを押します。[*]マークがついたすべてのファイルが 消去されます。

● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパ ティを見る」と同じ操作です。

EFDØ ESCØ

解 説

注 意

アクセスインジケータまたは の が点滅中は、メディア(ディスク)を取り出した り、電源をOFFにしないでください。メディアが損傷したり、メディア上のデー タが壊れる恐れがあります。

● メディアとディレクトリの選択

12.5節の解説「●メディアとディレクトリの選択」と同じです。

● ファイル属性の選択

ファイルごとにファイルの属性を、次の中から選択できます。

- · R/W
 - 読み出し/書き込みが可能です。
- ·R
 - 読み出しが可能です。書き込みはできません。消去もできません。

● 消去するファイルの選択

ファイル名の左に[*]マークをつけると、そのファイルすべてを消去できます。消去するファイルを選択する方法として、次の2つの方法があります。

・ファイルを1ずつ選択

[Set/Reset]のソフトキーで、ファイル名の左に[*]マークを1つずつ付けます。

・ファイルを一括して選択

[All Set]のソフトキーで、一括して選択したファイル名の左に[*]マークをつけます。一括する方法として、次の3つの方法があります。

- ファイルを選択して[All Set]のソフトキーを押すと、選択したファイルが含まれているディレクトリと、ディレクトリのすべてのファイルに[*]マークがつきます。
- ディレクトリを選択して[All Set]のソフトキーを押すと、選択したディレクトリと、ディレクトリのすべてのファイルに[*]マークがつきます。
- メディアを選択して[All Set]のソフトキーを押すと、選択したメディアのすべてのディレクトリとファイルに[*]マークがつきます。

● File Listダイアログボックスに表示するファイルの指定

表示するファイルの種類を指定できます。

Item

- File Item設定メニューとデータタイプ選択メニューで選択したデータのファイルだけを表示します。
- ·A∥
 - メディア内のすべてのファイルを表示します。

12

● プロパティ

12.5節の解説「●プロパティ」と同じです。

Note _

- · データ取り込み中(START/STOPインジケータが点灯)は、消去できません。
- ・ 消去されたデータは回復できません。消去するファイルを間違えないようにしてください。
- ・ディレクトリ内にファイルがないときは、ディレクトリの消去ができます。
- · 複数ファイルを消去実行中にエラーが発生したときは、エラー発生後のファイルは消去されません。
- ・ ディレクトリの属性は,変更できません。
- [File Item]が[Wave], [Data Type]が[Binary]で[Filter]が[Item]のときは, [*]マークを付けた 拡張子.WVFのファイルを消去すると同じファイル名の拡張子.HDRファイルも消去されます。
 [Filter]が[All]のときは, [*]マークが付いたファイルだけが消去されます。

12.9 ファイルをコピーする

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [Utility]のソフトキーを押します。Utility設定メニューとFile Listダイアログボック スが表示されます。
- 3. [Function]のソフトキーを押します。ファイル機能選択メニューが表示されます。
- 4. [Copy]のソフトキーを押します。コピー設定メニューが表示されます。

IM 253710-01

- コピー元のメディア/ディレクトリを選択する
 - 5. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- ファイルの属性を変える
 - 6. 12.8節の「●ファイルの属性を変える」と同じ操作です。
- コピー元のファイルを1ずつ選択する
 - 7. ジョグシャトルを回して、ファイルを選択します。
 - [Set/Reset]のソフトキーを押します。File Listダイアログボックスのファイル名の左に[*]が表示されると、そのファイルがコピーの対象になります。ファイル 名の左の[*]が消えると、そのファイルはコピーの対象になりません。 操作12に進みます。

● コピー元のファイルを一括して選択する

- 9. ジョグシャトルを回して、ファイル、ディレクトリ、またはメディアを選択しま す。
- [All Set]のソフトキーを押します。選択したファイルが含まれているディレクト リとディレクトリのすべてのファイル,選択したディレクトリとディレクトリの すべてのファイル,または選択したメディアのディレクトリとすべてのファイル の左に[*]が表示され、コピーの対象になります。同時に[All Set]ソフトキーの名 称が、[All Reset]に変わります。
- [All Reset]のソフトキーを押します。選択したファイルが含まれているディレクトリとディレクトリのすべてのファイル,選択したディレクトリとディレクトリのすべてのファイル,または選択したメディアのディレクトリとすべてのファイルの左の[*]が消え、コピーの対象になりません。同時に[All Reset]ソフトキーの名称が、[All Set]に変わります。

- コピー先を選択する
 - 12. [Dest Dir]のソフトキーを押します。コピー実行メニューとコピー先File Listダイ アログボックスが表示されます。

- コピー先のメディア/ディレクトリを選択する
 - 13. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- コピーを実行する
 - 14. [Copy Exec]のソフトキーを押します。コピー元の[*]マークがついたすべての ファイルがコピーされます。

ティを見る」と同じ操作です。

● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る
 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパ

12

解 説

Note

- · データ取り込み中(START/STOPインジケータが点灯)は、コピーできません。
- 複数ファイルをコピー実行中にエラーが発生したときは、エラー発生後のファイルはコピーされません。
- ・ ディレクトリの属性は、変更できません。
- コピー先に同一名のファイルがあるときは、コピーはできません。
- コピー実行直後にコピー先のディレクトリを変更して、同一ファイルをコピーすることはできません。コピーしたいファイルを選択し直してから、コピーをしてください。
- [File Item]が[Wave], [Data Type]が[Binary]で[Filter]が[Item]のときは、[*]マークを付けた 拡張子.WVFのファイルをコピーすると同じファイル名の拡張子.HDRファイルもコピーされま す。[Filter]が[All]のときは、[*]マークが付いたファイルだけがコピーされます。

12.10 ディレクトリ/ファイル名を変える, ディレクトリ を作る

操作キー

・ 」
 ・ 操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. FILEキーを押します。File設定メニューが表示されます。
- 2. [Utility]のソフトキーを押します。Utility設定メニューとFile Listウインドウが表示 されます。
- 3. [Function]のソフトキーを押します。ファイル機能選択メニューが表示されます。

12

ディレクトリ/ファイル名を変える

4. [Rename]のソフトキーを押します。名称変更メニューが表示されます。

Path = SCO	NPZ				•	Fun	ction
_File Nam	315648 e	Size	Date	Attribute		Ren	ane
[FD0] [SC0]		_			4	Fí le	Nane
< p		6220	1999/01/13 09:54 1999/01/09 0E:27	R/W R/H			
B	. UDA	1617305	1999/01/00 05:27	R/W	-		
č	HDR	6330	1999/01/10 03:47	R/M			
č	UUF	1612305	1999/01/10 03:47	B/W			
D	HDR	5786	1999/01/10 04:15	R∕₩			
D	.UVF	1416305	1999/01/10 04:15	R∕⊌	•		
NUMER000	.CSV	4319	1999/01/03 17:46	R∕⊌		Prop	erty
WAVE000	.HDR	6330	1999/01/03 17:39	R			
WAVE000	.⊎VF	26681	1999/01/03 17:39	R∕⊌			
					Γ	Fil	ter
				, •		Iten	A11
					l I		12

- メディア/ディレクトリを選択する
 - 5. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- ファイルの属性を変える
 - 6. 12.8節の「●ファイルの属性を変える」と同じ操作です。
- ディレクトリ/ファイル名を変える
 - 7. ジョグシャトルを回して、ディレクトリ/ファイルのどれかをを選択します。
 - 8. [File Name]のソフトキーを押します。キーボードが表示されます。キーボードの 入力欄に選択したディレクトリ/ファイル名が表示されています。
 - 9. キーボードを操作して、ディレクトリ/ファイル名を入力します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

 ● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る 12.5節の「●File Listダイアログボックスに表示するファイルを指定する」「●プロパ ティを見る」と同じ操作です。 ディレクトリを作る

4. [MakeDir]のソフトキーを押します。ディレクトリ作成メニューが表示されます。

		File	List		MakeDir
ath = SCO)\PZ				 Function
pace 2012	2315648	byte			
File Na	1e	Size_	Date	_Attribute	MakeDir
TEDO 1					
[SC0]					Dir Name
<	>	0	1999/01/13 09:54	R∕W	
В	.HDR	6330	1999/01/08 05:27	R∕W	
B	.UVF	1617305	1999/01/08 05:27	R∕W	
С	.HDR	6330	1999/01/10 03:47	R∕W	
C	.UVF	1617305	1999/01/10 03:47	R∕W	
D	.HDR	5786	1999/01/10 04:15	R∕W	
D	.UVF	1416305	1999/01/10 04:15	R∕⊌	•
NUMER00	∂.CSV	4319	1999/01/03 17:46	R∕⊌	Property
WAVE000	. HDR	6330	1999/01/03 17:39	R	
WAVE000	.WVF	26681	1999/01/03 17:39	R∕W	
					Filter
				! ▼	Item All
					-

- ●メディア/ディレクトリを選択する
 - 5. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- ファイルの属性を変える
 - 6. 12.8節の「●ファイルの属性を変える」と同じ操作です。
- ディレクトリを作る
 - 7. ジョグシャトルを回して、メディア/ディレクトリのどれかを選択します。
 - 8. [Dir Name]のソフトキーを押します。キーボードが表示されます。
 - 9. キーボードを操作して、ディレクトリ名を入力します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

● File Listダイアログボックスに表示するファイルを指定する、プロパティを見る 12.5節の「●File Listダイアログボックスに表示するファイルを指定する | 「●プロパ ティを見る」と同じ操作です。

注 意

アクセスインジケータまたは が 点滅中は、メディア(ディスク)を取り出した り、電源をOFFにしないでください。メディアが損傷したり、メディア上のデー タが壊れる恐れがあります。

● メディアとディレクトリの選択

12.5節の解説「●メディアとディレクトリの選択」と同じです。

● ファイル属性の選択

12.8節の解説「●ファイル属性の選択」と同じです。

●メディア/ディレクトリ/ファイル名の変更

メディア/ディレクトリ/ファイル名を変更するときの名称の付け方は、12.5節の解説 「●ファイル名/コメント」と同じです。

● ディレクトリの作成

メディア内にディレクトリを新しく作成できます。ディレクトリを新しく作成するときのディレクトリ名の付け方は、12.5節の解説「●ファイル名/コメント」と同じです。

● File Listダイアログボックスに表示するファイルの指定 12.8節の解説「●File Listダイアログボックスに表示するファイルの指定」と同じで

TZ.8町の解説「●FIRE LISLダイアロジホックスに表示するファイルの指定」と向しです。

● プロパティ

12.5節の解説「●プロパティ」と同じです。

Note _

- · データ取り込み中(START/STOPインジケータが点灯)は、ディレクトリ/ファイル名の変更や ディレクトリの作成はできません。
- ・ ディレクトリの属性は,変更できません。
- ・ 同一ディレクトリ内に同一名のファイルがあるときは、ファイル名の変更はできません。
- ・同一ディレクトリ内に同一名のディレクトリがあるときは、ディレクトリの作成はできません。
- [File Item]が[Wave], [Data Type]が[Binary]で[Filter]が[Item]のときは、選択された拡張子
 .WVFのファイルのファイル名を変更すると同じファイル名の拡張子.HDRファイルも変更されます。

13.1 内蔵プリンタ(オプション)にロール紙を取り付け る,紙送りをする

プリンタ用ロール紙

当社専用のロール紙をお使いください。これ以外の紙を使用しないでください。初めてお 使いになるときは、付属のロール紙をお使いください。ロール紙がなくなったときは、裏 表紙に記載の当社支社・支店・営業所またはお買い求め先までご注文ください。

部品番号	B9850NX
仕様	
販売単位	

ロール紙の取り扱い上の注意

このロール紙は、熱化学反応で発色する感熱紙です。次の点にご注意ください。

● 保存上の注意

使用する感熱紙は、70℃くらいから徐々に発色します。未使用、記録済みを問わず、 熱・湿気・光・薬品などに影響を受けます。

- ・乾燥した冷暗所に保管してください。
- ・開封後は、できるだけ早くお使いください。
- ・ 可塑剤を含んだプラスチックフィルム(塩化ビニル製フィルム,セロテープなど)を長期間接触させると、可塑剤の影響で記録部が退色します。たとえば、ホルダーに入れて保存するときは、ポリプロピレン製のホルダーをご使用ください。
- 記録紙を糊付けするときは、アルコール、エーテルなどの有機溶剤の入った糊を使用しないでください。発色の原因になります。
- ・長期にわたって保存する場合は、コピーすることをおすすめします。感熱紙の性質 上、記録部が退色する可能性があります。
- 使用上の注意
 - ・ロール紙は、当社が供給する純正品をご使用ください。
 - ・ 汗ばんだ手で触れると、指紋が付いたり記録がぼけることがあります。
 - ・表面を強くこすると、摩擦熱で発色することがあります。
 - ・ 薬品・油などが接触すると、発色したり記録が消えることがあります。

ロール紙を取り付ける

1. ロック解除レバーを「OPEN」の矢印の方向に押しながら、プリンタカバーの左 側にある取っ手を持ち上げ、プリンタカバーを開きます。

2. 手前右側にあるリリースアームを,「MAN FEED」の位置に移動します。ロール 紙の内側(つるつるしていない方)が上になるようにしてロール紙を持ち,ロール 紙収納スペースの左側にある可動ホルダーを左側に押しながら,芯を右側のホル ダーにセットし,可動ホルダーを離します。

3. ローラと黒色のガイドの隙間にロール紙の先端を均一に挿入し、ローラの上側か らロール紙の先端が10cmくらい出るまで、紙送りノブを奥に回します。

 リリースアームを「FREE」の位置に移動して、ロール紙のたわみやゆがみを調整 してから、リリースアームを「HOLD」位置に移動します。「FREE」や「MAN FEED」位置にあるままでは、プリンタ出力実行時にエラーメッセージが表示さ れ、プリントできません。

5. プリンタカバーを奥から手前に倒し、カバーを閉じます。そのとき、ロール紙の 先端がプリンタカバーの紙挿出口から出るようにします。カバーを閉じるとき は、カチッと音がするまで、しっかり押してください。

Note _

ロール紙を取り付けたあと、次ページの操作に従って、正常に紙送りされていることを確認し てください。万一、ゆがんで紙送りされる場合は、続けて30cmほど紙送りしてください。ゆ がみが直ります。

紙送りをする

操作キー

操

作

- 1. SHIFT+COPY(MENU)キーを押します。Copy設定メニューが表示されます。
- 2. [Copy to]のソフトキーを押します。出力媒体選択メニューが表示されます。
- 3. [Printer]のソフトキーを押します。
- 4. [Paper Feed]のソフトキーを押します。紙送りをします。[Paper Feed]のソフト キーを押している間,紙送りをします。

7-

解 説

ロール紙が正しく取り付けられているかどうかを確認するときや、ロール紙の汚れている 部分を避けたいときなどに、紙送りができます。

Note.

データ取り込み中(START/STOPインジケータが点灯)は、紙送りができません。

13.2 内蔵プリンタ(オプション)に出力する

操作キー

・ は,操作するキーを示します。
 ・ 操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. SHIFT+COPY(MENU)キーを押します。Copy設定メニューが表示されます。
- 2. [Copy to]のソフトキーを押します。出力媒体選択メニューが表示されます。
- 3. [Printer]のソフトキーを押します。

● 画面イメージデータを出力する

・コメントを設定する

- 4. [Comment]のソフトキーを押します。キーボードが表示されます。
- 5. キーボードを操作して、コメントを入力します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

・出力を実行する

- 6. 出力したい画面にします。
- START/STOPキーを押して、データの取り込みをストップします。 START/STOPキーの上のインジケータが点灯していないことを確認します。
- 8. COPYキーを押します。画面のイメージデータが出力されます。

・出力を中止する

9. Copy設定メニューの[Abort]のソフトキーを押します。

	-
Copy Copy_to Printer	
4	
Connent	
Paper Feed	
Abort	

● 数値データリストを出力する(ファームウエアバージョン2.01以降の製品(PZ4000)で適用できます。)

・出力を実行する

- START/STOPキーを押して、データの取り込みをストップします。 START/STOPキーの上のインジケータが点灯していないことを確認します。
- 5. [Print Data List Exec]のソフトキーを押します。数値データのリストが出力され ます。

<u>Copy</u> € Copy to Printer	
Print Data List Exec	
Comment	
Paper Feed	
Abort	
\	

・出力を中止する

6. Copy設定メニューの[Abort]のソフトキーを押します。

● 画面イメージデータの出力

コメントの設定

画面下側に入力したコメントが表示されます。表示されたコメントも画面イメージデー タとして出力されます。

使用できる文字数と種類

設定内容	文字数	使用できる文字
コメント	0~25文字	すべての文字(スペース含む)

● 数値データリストの出力

選択されている表示桁数(8.1節参照)に合わせて、数値データを出力します。ファーム ウエアバージョン2.01以降の製品(PZ4000)で適用できます。

- 通常測定のデータリスト
 - · 通常測定モードのときに出力されます。
 - · 横方向にエレメント, 縦方向に測定ファンクションのリストを出力します。
 - ・表示桁数が6桁のとき、横方向のエレメントの印字が2段になります。それに合わせて各測定ファンクションのリストも2段の印字になります。
- ・ 高調波測定のデータリスト
 - · 高調波測定モードのときに出力されます。
 - ・横方向にエレメントと8.5節で設定した[Dual List]の測定ファンクション、縦方向 に次数のリストを表示します。
 - ・次数の範囲は、10.7節で設定した[Min Order]~[Max Order]の範囲です。
- ・ヘッダ

観測時間(高調波測定モード時は-----を印字),サンプルレート,日付,時刻,各 エレメントの測定レンジが出力されます。

Note _

データ取り込み中(START/STOPインジケータが点灯)は、出力できません。

13.3 セントロニクス対応の外部プリンタに出力する

操作キー

ーを押します。

操作

- 1. SHIFT+COPY(MENU)キーを押します。Copy設定メニューが表示されます。
- 2. [Copy to]のソフトキーを押します。出力媒体選択メニューが表示されます。
- 3. [Centro]のソフトキーを押します。

● 出力コマンドを選択する

- 4. [Format]のソフトキーを押します。出力コマンド選択メニューが表示されます。
- 5. [ESC-P]~[PR201]のどれかのソフトキーを押して,出力コマンドを選択しま す。

[ESC-P], [ESC-P2], [BJ], [PCL5]を選択したときは, 操作6に進みます。 [LIPS3], [PR201]を選択したときは, 操作7に進みます。

- ●カラー出力をする(ON)/しない(OFF)を選択する (操作5で,[ESC-P],[ESC-P2],[BJ],[PCL5]を選択したときに適用します。)
 6. [Color]のソフトキーを押して,[ON]または[OFF]のどちらかを選択します。
- コメントを設定する
 - 7. [Comment]のソフトキーを押します。キーボードが表示されます。
 - 8. キーボードを操作して、コメントを入力します。
 - キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

● 出力を実行する

- 9. 出力したい画面にします。
- 10. START/STOPキーを押して、データの取り込みをストップします。 START/STOPキーの上のインジケータが点灯していないことを確認します。
- 11. COPYキーを押します。画面のイメージデータが出力されます。

● 出力を中止する

12. Copy設定メニューの[Abort]のソフトキーを押します。

<u>Copy</u> ← Copy to Centro	
■ Format ESC-P	
DFF ON	
 Conment 	
Abort	

ピンNo.

1

2

3 ł

ł

11

12

13

セントロニクスインタフェースを使って外部プリンタに画面イメージデータを出力できま す。

 (\pm)

0

Ŧ

14

15

16

23

24

25

注 意

外部プリンタと本機器の接続には、D-Sub25ピン対応のケーブルをお使いくださ い。誤接続は、本機器や接続された他の機器を損傷する恐れがあります。

● セントロニクスインタフェースの仕様

ピンNo. 信号名 ピンNo. 信号名 1 STROBE(ストロープ) 10 ACK(肯定応答) 14 2 DATA0(プリントデータビット0) 11 BUSY(ビジー) 15 3 DATA1(プリントデータビット0) 11 BUSY(ビジー) 16 4 DATA2(プリントデータビット1) 12 PE(ペーパーエンド) 16 5 DATA3(プリントデータビット2) 13 SLCT(選択) 6 DATA4(プリントデータビット3) 14 AFDXT(自動給紙) 7 DATA5(プリントデータビット5) 16 INIT(プリンタボラー) 7 DATA6(プリントデータビット5) 16 INIT(プリンタ初期化) 8 DATA6(プリントデータビット6) 17 SLCTIN(セレクトイン) 23 9 DATA7(プリントデータビット7) 18~25 GND(グランド)					
1 STROBE(ストローブ) 10 ACK(肯定応答) 14 2 DATA0(プリントデータビット0) 11 BUSY(ビジー) 15 3 DATA1(プリントデータビット1) 12 PE(ペーパーエンド) 16 4 DATA2(プリントデータビット2) 13 SLCT(選択) 16 5 DATA3(プリントデータビット3) 14 AFDXT(自動給紙) 17 0ATA5(プリントデータビット4) 15 Error(プリンタエラー) 7 DATA5(プリントデータビット5) 16 INIT(プリンタ初期化) 8 DATA6(プリントデータビット6) 17 SLCTIN(セレクトイン) 23 9 DATA7(プリントデータビット7) 18~25 GND(グランド)		ピンNo.	信号名	ピンNo.	信号名
14 2 DATA0(プリントデータビット0) 11 BUSY(ビジー) 15 3 DATA1(プリントデータビット1) 12 PE(ペーパーエンド) 16 4 DATA2(プリントデータビット2) 13 SLCT(選択) 16 5 DATA3(プリントデータビット3) 14 AFDXT(自動給紙) 17 6 DATA4(プリントデータビット4) 15 Error(プリンタエラー) 7 DATA5(ブリントデータビット5) 16 INIT(プリンタ初期化) 8 DATA6(ブリントデータビット6) 17 SLCTIN(セレクトイン) 23 9 DATA7(ブリントデータビット7) 18~25 GND(グランド)		1	STROBE(ストローブ)	10	ACK(肯定応答)
15 3 DATA1(プリントデータビット1) 12 PE(ペーパーエンド) 16 4 DATA2(プリントデータビット2) 13 SLCT(選択) 16 5 DATA3(プリントデータビット2) 13 SLCT(選択) 16 6 DATA4(プリントデータビット3) 14 AFDXT(自動給紙) 17 DATA5(プリントデータビット5) 16 INIT(プリンタ初期化) 18 DATA6(プリントデータビット6) 17 SLCTIN(セレクトイン) 19 DATA7(プリントデータビット7) 18~25 GND(グランド)	14	2	DATAO(プリントデータビットO)	11	BUSY(ビジー)
16 4 DATA2(プリントデータビット2) 13 SLCT(選択) 5 DATA3(プリントデータビット3) 14 AFDXT(自動給紙) (背面) 6 DATA4(プリントデータビット4) 15 Error(プリンタエラー) 7 DATA5(プリントデータビット5) 16 INIT(プリンタ初期化) 8 DATA6(プリントデータビット6) 17 SLCTIN(セレクトイン) 23 9 DATA7(プリントデータビット7) 18~25 GND(グランド)	15	3	DATA1(プリントデータビット1)	12	PE(ペーパーエンド)
5 DATA3(プリントデータビット3) 14 AFDXT(自動給紙) (背面) 6 DATA4(プリントデータビット4) 15 Error(プリンタエラー) 7 DATA5(プリントデータビット5) 16 INIT(プリンタ初期化) 8 DATA6(プリントデータビット6) 17 SLCTIN(セレクトイン) 9 DATA7(プリントデータビット7) 18~25 GND(グランド)	16	4	DATA2(プリントデータビット2)	13	SLCT(選択)
(背面)6DATA4(プリントデータビット4)15Error(プリンタエラー)7DATA5(プリントデータビット5)16INIT(プリンタ初期化)8DATA6(プリントデータビット6)17SLCTIN(セレクトイン)239DATA7(プリントデータビット7)18~25GND(グランド)	1	5	DATA3(プリントデータビット3)	14	AFDXT(自動給紙)
7DATA5(ブリントデータビット5)16INIT(プリンタ初期化)8DATA6(ブリントデータビット6)17SLCTIN(セレクトイン)239DATA7(ブリントデータビット7)18~25GND(グランド)	- (背面)	6	DATA4(プリントデータビット4)	15	Error(プリンタエラー)
8 DATA6(ブリントデータビット6) 17 SLCTIN(セレクトイン) 23 9 DATA7(ブリントデータビット7) 18~25 GND(グランド) 24 9 DATA7(ブリントデータビット7) 18~25 GND(グランド)	· · · ·	7	DATA5(プリントデータビット5)	16	INIT(プリンタ初期化)
23 9 DATA7(プリントデータビット7) 18~25 GND(グランド)	1 00	8	DATA6(プリントデータビット6)	17	SLCTIN(セレクトイン)
	23 24	9	DATA7(プリントデータビット7)	18~25	GND(グランド)

● 出力コマンドの選択

- 外部プリンタへの出力コマンドの種類を、次の中から選択できます。
- · ESC-P
- · ESC-P2(ESC/Pラスタコマンド対応機種で使用可能)
- ·ВJ
- · PCL5
- · LIPS3
- · PR201(PC-PR201)

● カラー出力のON/OFF

出力コマンドの種類が[ESC-P], [ESC-P2], [PCL5], [BJ]のときに, カラー出力をす るかしないかの選択ができます。

- \cdot OFF
 - 白黒で表示波形をプリンタに出力します。
- · ON
 - カラー(256色)で、表示波形をプリンタに出力できます。

● コメントの設定

13.2節の解説「コメントの設定」と同じです。

Note .

データ取り込み中(START/STOPインジケータが点灯)は、出力できません。

13.4 フロッピーディスク/SCSIデバイスに出力する

操作キー

・ 操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. SHIFT+COPY(MENU)キーを押します。Copy設定メニューが表示されます。
- 2. [Copy to]のソフトキーを押します。出力媒体選択メニューが表示されます。
- 3. [File]のソフトキーを押します。

	7
<u>Copy</u> ← Copy to Printer	
Conment	
Paper Feed	
Abort	
(1

Copy to	
Printer	
Centro	
File	
↓ Connent	
Paper Feed	
Abort	
, <u> </u>	L

	~
Copy Copy to File	
 File List 	
◀ Format TIFF	
Color OFF	
◀ Fíle Name	
Abort	
	<u> </u>

● 出力先のメディア/ディレクトリを選択する

- (File List)のソフトキーを押します。File Listダイアログボックスが表示されます。
- 5. 12.5節の「●読み込み元のメディアを選択する」「●読み込み元のディレクトリ を選択する」と同じ操作です。
- 6. ESCキーを押して, File Listダイアログボックスを閉じます。

● データ形式を選択する

- 7. [Format]のソフトキーを押します。データ形式選択メニューが表示されます。
- [TIFF]~[Post Script]のどれかのソフトキーを押して、データ形式を選択します。

[TIFF], [BMP]を選択したときは,操作9に進みます。

[Post Script]を選択したときは、操作11に進みます。

● カラー出力の選択をする

(操作8で, [TIFF], [BMP]を選択したときに適用します。)

- ジョグシャトルを回して、[Color]~[OFF]のどちらかを選択します。
 [Color]、[Reverse]を選択したときは、操作10に進みます。
 [OFF]を選択したときは、操作11に進みます。
- データ圧縮をする(ON)/しない(OFF)を選択する

(操作9で, [Color]を選択したときに適用します。)

10. [Compression]のソフトキーを押して, [ON]または[OFF]のどちらかを選択しま す。

● 出力するときのファイル名/コメントを設定する

11. 12.5節の「●保存するファイル名/コメントを設定する」と同じ操作です。

● 出力を実行する

- 12. 出力したい画面にします。
- 13. START/STOPキーを押して、データの取り込みをストップします。 START/STOPキーの上のインジケータが点灯していないことを確認します。
- 14. COPYキーを押します。画面のイメージデータが出力されます。

● 出力を中止する

15. Copy設定メニューの[Abort]のソフトキーを押します。

画面イメージをフロッピーディスクやSCSIデバイスに出力(保存)できます。

● 出力先のメディアとディレクトリの選択

12.5節の解説「●メディアとディレクトリの選択」と同じです。

● データ形式の選択, 拡張子, データサイズ

出力(保存)するデータ形式を,次の中から選択できます。拡張子は,自動的に付きます。

データタイプ	拡張子	データサイズ(バイト)
TIFF	.TIF	約350K(Color, データ圧縮(Compress)をOFF)
BMP	.BMP	約50K(Color, データ圧縮(Compress)をON)
PostScript	.PS	約80K

* 参考値です。PostScriptの場合、Color、Reverseとデータ圧縮の選択項目はありません。

● カラー出力の選択

データ形式が[TIFF], [BMP]のときに,次の中から選択できます。

- · Color
 - カラー(256色)で、画面イメージデータを出力します。
- Reverse

背景色を白,文字を黒,波形をカラーで画面イメージデータを出力します。 ・ OFF

UFF

白黒で、画面イメージデータを出力します。

● データ圧縮のON/OFF

- データ形式が[TIFF], [BMP]のときに,次の中から選択できます。
- · OFF
 - データを圧縮しないで出力します。
- · ON
 - TIFF形式はLZWで、BMP形式はRLEでデータを圧縮して出力できます。

● ファイル名/コメント

12.5節の解説「●ファイル名/コメント」と同じです。

● オートネーミング機能

12.5節の解説「●オートネーミング機能」と同じです。

Note _

データ取り込み中(START/STOPインジケータが点灯)は、出力できません。

14.1 外部トリガ出力

注 意

外部トリガ出力コネクタに外部から電圧を加えたりしないでください。本機器を 損傷する恐れがあります。

トリガ出力端子

トリガがかかったときに、CMOSレベルの信号を出力します。通常はHighレベルの状態で、トリガがかかるとLowレベルになります。

(\bigcirc)	EXT TRIG OUT

仕様

項目	仕様
コネクタ形式	BNCコネクタ
出力レベル	CMOS
出力論理形式	U(負論理)
出力遅延時間	(1µs+1サンプル周期)以内
出力保持時間	Lowレベル 200ns以上

トリガ出力の回路図/タイミングチャート

トリガ発生(トリガポジションの時間)

Note ____

外部トリガ入力の取り扱いについては、「7.2 トリガソースを選択する」をご覧ください。

14.2 メッセージの言語/画面輝度を設定する

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Config]のソフトキーを押します。環境設定メニューが表示されます。

● メッセージの言語を選択する

- 3. [Message]のソフトキーを押します。メッセージ言語選択メニューが表示されます。
- 4. [JPN]または[ENG]のどちらかを押して、メッセージ言語を選択します。

● 画面の輝度を設定する

3. ジョグシャトルを回して, [LCD Brightness]の値を[-1]~[3]のどれかを選択します。

	-
Config	
JPN	
LCD Brightness 0	
Î	
r	4.1

● メッセージの言語の選択

エラーが発生したときに,エラーメッセージが表示されます。メッセージを表示する言語を,次の中から選択できます。エラーメッセージのエラーコードはどちらも同じです。エラーメッセージの詳細は,16.2節をご覧ください。

· JPN

解 説

- 日本語で表示されます。
- · ENG
 - 英語で表示されます。

● 画面の輝度の設定

画面の明るさを-1~3の範囲で設定できます。最も暗い輝度が[-1],最も明るい輝度が[3]です。

14.3 画面の表示色を設定する

操作キー

・」」は、操作するキーを示します。
 ・操作途中で、メニューから抜け出すときは、ESCキーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。

-	
_	Misc
	Graph Color
	Text Color
	Next 2/2

● グラフィックカラーを設定する

- ・デフォルト/ユーザーを選択する
- 3. [Graph Color]のソフトキーを押します。グラフィックカラー設定メニューが表示 されます。
- 4. ジョグシャトルを回して, [Mode]を[Default]または[User]から選択します。

・ユーザー設定をする

- 5. [User Color]のソフトキーを押します。グラフィックカラー設定ダイアログボッ クスが表示されます。
- 6. ジョグシャトルを回して、設定しようとする項目を選択します。
- 7. SELECTキーを押します。カラーレベル設定ボックスが表示されます。
- 8. ジョグシャトルを回して、カラーレベルを[0]~[7]から選択します。
- 9. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

	~
Misc ◀ Graph Color	
Text Color	
Next 2/2	

			Graph Color Mode Default User Color	
	Graph Color ==:			
R G Back ⊉-1_0	B O CH3	R G B 0 0 0		$\ $
Grid 0	_0_ CH4	000		
Cursor 0 0	0 CH5/Mathi	000		$\ $
СН1 00	0 CH6/Math2			
CHZ 00	0 CH7	0 0 0		\parallel \square
	CH8	00		

- テキストカラーを設定する
 - ・プリセット/ユーザーを選択する
 - 3. [Text Color]のソフトキーを押します。テキストカラー設定メニューが表示され ます。
 - 4. ジョグシャトルを回して、[Mode]を[Preset1]~[User]から選択します。

・ユーザー設定をする

- 5. [User Color]のソフトキーを押します。テキストカラー設定ダイアログボックス が表示されます。
- 6. ジョグシャトルを回して、設定しようとする項目を選択します。
- 7. SELECTキーを押します。カラーレベル設定ボックスが表示されます。
- 8. ジョグシャトルを回して、カラーレベルを[0]~[7]から選択します。
- 9. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

解 説

項目ごとに,表示色を設定できます。表示色は,赤(R),緑(G),青(B)の割合(0~7)で設定 します。

● グラフィックカラーの設定

デフォルトまたはユーザー設定のどちらを選択できます。

- ユーザー設定は、次の各項目についてそれぞれ表示色を設定できます。
- Back
- 波形表示枠内の背景色を設定できます。
- Grid
 - メニュー表示の外枠の表示色を設定できます。
- Cursor
 - マーカーやカーソルの表示色を設定できます。
- CH1~CH8 波形の表示色を設定できます。CH5とMath1, CH6とMath2は同じ表示色の設定に なります。

● テキストカラーの設定

- プリセット1~3,またはユーザー設定のどれかを選択できます。
- ユーザー設定は、次の各項目についてそれぞれ表示色を設定できます。
- Menu Fore メニュー、ダイアログボックス、ウインドウ、およびその他の画面上の文字の表示 色を設定できます。
 Menu Back
 - 波形表示枠や画面上の文字の背景色を設定できます。
- Select Box
- 選択したメニュー枠内やボックス内の背景色を設定できます。
- · Sub Menu
- 選択したダイアログボックスやウインドウの表示色を設定できます。
- Selected Key
 選択したソフトキーの表示色を設定できます。

14.4 アクションオントリガを設定する

操作キー

・操作途中で,メニューから抜け出すときは, ESCキ ーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Next 1/2]のソフトキーを押します。[Next 2/2]のメニューが表示されます。
 * アクションオントリガは、ファームウエアバージョン2.01以降の製品(PZ4000)に適用 できます。)

- 数値データ,波形データおよび設定情報を保存するアクションをする(ON)/しない(OFF) を選択する
 - 3. [Save to File]のソフトキーを押して, [ON]または[OFF]を選択します。
- 画面イメージデータを出力または保存するアクションをする(ON)/しない(OFF)を選択す る
 - 4. [Hard Copy]のソフトキーを押して, [ON]または[OFF]を選択します。

● アクション回数を設定する

5. ジョグシャトルを回して、アクション回数を設定します。

● アクションオントリガを実行する/停止する

START/STOPキーを押すとアクションオントリガが実行されます。もう一度START/ STOPキーを押してデータの取り込みをストップするか,設定したアクション回数だけ アクションオントリガが実行されると,アクションオントリガは停止します。SINGLE STARTキーを押すと,1回だけアクションオントリガを実行します。

解説

トリガがかかったときに、指定したアクション(動作)をさせることができます。

● 数値データ,波形データおよび設定情報の保存

数値データ,波形データおよび設定情報のうち12章で設定したデータを、トリガがか かったときに保存するかしないかの選択ができます。保存先は12章で設定したメディ アになります。

- ・ON:保存します。
- OFF:保存しません。

● 画面イメージデータの出力または保存

画面イメージデータを、トリガがかかったときに出力(または保存)するかしないかの選 択ができます。出力(または保存)は13章で設定した出力(または保存)先になります。

- ・ON:出力(または保存)します。
- · OFF:出力(または保存)しません。

● アクションの回数

- · 1~65536
- 指定した回数のアクションをすると、アクションオントリガは終了します。
- Infinite
 START/STOPキーを押して、データの取り込みをストップするまで、アクション を繰り返します。
- ・アクションオントリガを実行中は、アクションの回数を変更できません。

● アクションオントリガの実行/停止

- アクションオントリガの実行
 START/STOPキーまたはSINGLE STARTキーで波形の取り込みをスタートする
 と、アクションオントリガを実行します。SINGLE STARTキーを押したときは、1
 回だけアクションオントリガを実行します。
- アクションオントリガの停止
 START/STOPキーを押して、データの取り込みをストップします。

●保存するときのファイル名

- ・ 自動的に000~999の3桁の番号が付いたファイル名になります。また,番号の前に 共通名(最大5文字)を付けられます。各データの保存操作(12, 13章参照)で設定した ファイル名が共通名(最大5文字)になります。
- ・保存先に同じファイル名があるとエラーメッセージが表示され、保存されません。

Note _

保存できるファイル数は、保存されるファイルのデータサイズや保存先の使用可能領域のサイズによって異なります。

15.1 回転速度とトルクの信号を入力する

モータの回転速度に比例した直流電圧(アナログ信号)またはパルス数と、モータのトルク に比例した直流電圧(アナログ信号)を、回転センサやトルクメータから本機器のチャネル 7とチャネル8にそれぞれ入力できます。本機器が電力測定モジュールで測定する有効電力 や周波数と、モータモジュールに入力される回転速度やトルクのデータを使って、モータ 出力、同期速度、すべり、モータ効率、およびトータル効率などの演算もできます。

注 意

本機器の電源スイッチがONのときは、センサ入力コネクタに最大許容入力(ピー ク値が50Vまた実効値が25Vのどちらか)を超える電圧を入力しないでください。 本機器の電源スイッチがOFFのときは、センサ入力コネクタに供給されている電 源を切ってください。

回転センサ信号入力用チャネル(CH7)

次の仕様に従って、回転センサから出力される信号(モータの回転速度に比例した直流電圧 (アナログ信号)またはパルスの信号)を入力してください。

● 直流電圧(アナログ入力)

 項目	仕様
 コネクタ形式 測字レンジ	BNCコネクタ 50/kgk 20/kgk 10/kgk 5/kgk 2/kgk 1/kgk
周定レンシ 有効入力範囲	300pk, 200pk, 100pk, 50pk, 20pk, 10pk 測定レンジの±100%
計器損失	約1MΩ,約17pF
最大許容入力	50Vpkまたは25Vrmsのどちらか低い方
連続最大同相電圧	600Vrms (CAT II)
* 1 = 7 1 1 1 1 1 1 1 1 1 - 0 1	マロー 1日安ま ブミントン

・上記以外の仕様については、17章をご覧ください。

● パルス入力

項目	仕様
コネクタ形式	BNCコネクタ
周波数範囲	1Hz~200kHz
振幅入力範囲	±5V
有効振幅	1V (Peak to Peak) 以上
入力波形	デューティサイクル50%の方形波

トルクメータ信号入力用チャネル(CH8)

次の仕様に従って、トルクメータから出力される信号(モータのトルクに比例した直流電圧 (アナログ信号))を入力してください。

項目	仕様
コネクタ形式	BNCコネクタ
測定レンジ	50Vpk, 20Vpk, 10Vpk, 5Vpk, 2Vpk, 1Vpk
有効入力範囲	測定レンジの土100%
計器損失	約1MΩ,約17pF
最大許容入力	50Vpkまたは25Vrmsのどちらか低い方
連続最大同相電圧	600Vrms (CAT II)

上記以外の仕様については、17章をご覧ください。

15

高調波測定モードでモータモジュールの測定ファンクションを表示するときの注意

- 下記説明文中の測定ファンクションの記号の意味については、15.2節以降または付録2を ご覧ください。
- Speed, Torque, Sync, Slip, Pm, ηmA, ηmBの数値データは0次(直流)成分で す。高調波測定モードでの最小次数(Min Order)の初期設定は1次になっています。
 Speed, Torque, Sync, Slip, Pm, ηmA, ηmBの数値データを表示するには、最 小次数を0次にする必要があります。
- ・通常測定モード時のTorqueの数値データは、単純平均の値です。高調波測定モード時のTorqueの各高調波成分と全体(Total)の数値データは、実効値です。通常測定モード時と同じ数値データは、Trq(dc)のところに表示されます。
- · SpeedとPmの0次(直流)成分が、全体の数値データとして表示されます。
- ・PLLソース(Pll Source)と周波数同期ソース(Sync Speed Source)が同じチャネルに設定されているときにだけ、SyncとSlipの数値データが表示されます。
- ・ η mAにはP \geq A 全体に対するPm全体の比率, η mBにはP \geq B 全体に対するPm全体の比 率を表示します。
15.2 回転センサ信号とトルクメータ信号の入力レンジを 設定する

操 作

操作キー

全画面メニューで設定する

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボッ クスが表示されます。

ファームウエアバージョン2.01より前の製品(PZ4000)では, [Power Module]のソフト キーだけが表示され,モータモジュールの設定はできません。また,モータモジュール がエレメント番号4のスロットに装着されていないとき, [Motor Module]のメニューは 表示されません。

● 回転センサ信号の入力レンジを選択する

・後述の「●回転センサの信号タイプを選択する」で、[Analog]を選択したとき

- 3. ジョグシャトルを回して、Speed(Ch7)の[Range]を選択します。
- 4. SELECTキーを押します。入力レンジ選択ボックスが表示されます。
- 5. ジョグシャトルを回して, [50Vpk]~[1Vpk], [Auto]のどれかを選択します。
- 6. SELECTキーを押して,入力レンジを確定します。
- ・後述の「●回転センサの信号タイプを選択する」で、[Pulse]を選択したとき [5Vpk]の入力レンジに固定です。

モータ評価機能(モータモジュールに適用)

● トルクメータ信号の入力レンジを選択する

- 7. ジョグシャトルを回して, Torque(Ch8)の[Range]を選択します。
- 8. SELECTキーを押します。入力レンジ選択ボックスが表示されます。
- 9. ジョグシャトルを回して, [50Vpk]~[1Vpk], [Auto]のどれかを選択します。
- 10. SELECTキーを押して,入力レンジを確定します。

● 回転センサの信号タイプを選択する

- 11. ジョグシャトルを回して, [Sense Type]を選択します。
- 12. SELECTキーを押して、[Analog]または[Pulse]のどちらかを選択します。

●回転センサ信号の周波数入力レンジを選択する (前述の「●回転センサの信号タイプを選択する」で、[Pulse]を選択したときに、ここでの選択が有効になります。)

- 13. ジョグシャトルを回して, [Freq Range]を選択します。
- 14. SELECTキーを押します。周波数入力レンジ選択ボックスが表示されます。
- 15. ジョグシャトルを回して, [2k-200kHz]~[1-40Hz], [Auto]のどれかを選択しま す。
- 16. SELECTキーを押して、周波数入力レンジを確定します。

	Speed (Ch7) Torque (Ch8)	Pn
Range	50Vpk6	+Select
Sense Type	_Amalog _Pulse _	50Vpk
Freq Range	2k-200kHz	20Vpk
Filter	OFF	10∪pk
Zero Cross Filter	OFF	5Vpk
Sca 1 ing	1.0000 1.0000	2∪pk
Unit	rpnNn	1∪pk
Pulse N	60	Auto
Pole Sync Speed Source	2 CH2	

	Speed (Ch7)	Torque(Ch8)	Pn
Range	5Vpk	50Vpk	
Sense Type	_Ana logPu 1s	æ	
Freq Range	_ 2k-200kHz	+Select	1
Filter	OFF	Zk-200kHz	
Filter	OFF	250 – 8kHz	
Scaling	1.0000	16 -800 Hz	1.0000
Unit	rpn	1 - 40 Hz	V
Pulse N	60	Auto	
Pole Sunc Sneed	Z	<u> </u>	
Source	CH2		

Motor Module

チャネル設定メニューで回転センサ信号の入力レンジを設定する

- CH7キーを押します。チャネル設定メニューが表示されます。 ファームウエアパージョン2.01より前の製品(PZ4000),またはモータモジュールがエ レメント番号4のスロットに装着されていないとき、回転センサ信号の入力レンジの設 定メニューは表示されません。
- 回転センサの信号タイプを選択する
 - 2. [Sense Type]のソフトキーを押して, [Analog]または[Pulse]のどちらかを選択 します。
- 回転センサ信号の入力レンジを選択する
 - ・前述の「●回転センサの信号タイプを選択する」で、[Analog]を選択したとき
 - 3. [Sensor Range]のソフトキーを押します。入力レンジ選択ボックスが表示されます。
 - 4. ジョグシャトルを回して, [50Vpk]~[1Vpk], [Auto]のどれかを選択します。
 - 5. SELECTキーを押して,入力レンジを確定します。
 - ・前述の「●回転センサの信号タイプを選択する」で、[Pulse]を選択したとき [5Vpk]の入力レンジに固定です。

● 回転センサの周波数入力レンジを選択する

(前述の「●回転センサの信号タイプを選択する」で, [Pulse]を選択したときに,メ ニューが表示されます。)

- 6. [Freq Range]のソフトキーを押します。周波数入力レンジ選択ボックスが表示されます。
- 7. ジョグシャトルを回して, [2k-200kHz]~[1-40Hz], [Auto]のどれかを選択しま す。
- 8. SELECTキーを押して、周波数入力レンジを確定します。

IM 253710-01

チャネル設定メニューでトルクメータ信号の入力レンジを設定する

- CH8キーを押します。チャネル設定メニューが表示されます。 ファームウエアパージョン2.01より前の製品(PZ4000),またはモータモジュールがエ レメント番号4のスロットに装着されていないとき、トルクメータ信号の入力レンジの 設定メニューは表示されません。
- トルクメータ信号の入力レンジを選択する
 - 2. [Sensor Range]のソフトキーを押します。入力レンジ選択ボックスが表示されます。
 - 3. ジョグシャトルを回して, [50Vpk]~[1Vpk], [Auto]のどれかを選択します。
 - 4. SELECTキーを押して,入力レンジを確定します。

解 説

モータの回転速度に比例した直流電圧(アナログ信号)またはパルス数と、モータのトルク に比例した直流電圧(アナログ信号)を、回転センサやトルクメータから本機器のチャネル 7とチャネル8にそれぞれ入力して測定できます。

● 回転センサの信号タイプの選択

次の中から選択できます。

- Analog
 - 回転センサの信号タイプが直流電圧(アナログ信号)のときに選択します。
- Pulse
 回転センサの信号タイプがパルス信号のときに選択します。

● 回転センサ信号の入力レンジの選択

固定レンジとオートレンジの2種類があります。

- ・固定レンジ
 ・回転センサの信号タイプが[Analog]のとき
 - 入力レンジを次の中から選択できます。
 - 50Vpk, 20Vpk, 10Vpk, 5Vpk, 2Vpk, 1Vpk
 - ・回転センサの信号タイプが[Pulse]のとき
 - 5Vpkに固定です。

・オートレンジ

入力レンジ設定で[Auto]を選択するとオートレンジになります。入力信号の大きさによって、自動的にレンジが切り替わります。切り替わる条件や注意事項は「5.3 直接入力のときの測定レンジを設定する」と同じです。切り替わるレンジの種類は 上記の固定レンジと同じです。

● 回転センサ信号の周波数入力レンジの選択

回転センサの信号タイプが[Pulse]のとき、この選択が有効になります。固定レンジと オートレンジの2種類があります。

- 固定レンジ
 周波数入力レンジを次の中から選択できます。
 2k-200kHz, 250-8kHz, 16-800Hz, 1-40Hz
- ・オートレンジ

周波数入力レンジ設定で[Auto]を選択するとオートレンジになります。入力信号の 周波数によって、自動的にレンジが切り替わります。切り替わる条件や注意事項は 下記のとおりです。切り替わるレンジの種類は上記の固定レンジと同じです。

周波数入力レンジ	レンジアップ/ダウン条件
2k-200kHz	レンジダウン
	観測時間内に2kHz以下のデータが1つ以上ある。
	レンジ不変
	観測時間内のすべてのデータが2kHzを超えている。
250-8kHz	レンジアップ
	観測時間内に5kHz以上のデータが1つ以上ある。
	レンジダウン
	観測時間内に250Hz以下のデータが1つ以上ある。
	・観測時間内のすべてのテータか250Hzを超え5kHz未満である。
	または 観測時間中に250にトレエー 5月にトリートのデータが再去する
	 ・ 観測时间内に200HZLK下、5KHZLK上のナーダが両方のる。
16-800Hz	
	観測時間内に312.5HZ以上のテータが1つ以上ある。
	レンンタリン 毎週時間内に15.625日-トエのデークが1つトトキス
	観測时间内に13.02502以下のノーダルーン以上のる。 しいいズ本
	 ・ 観測時間内のすべてのデータが15 625Hzを招え312 5Hz未満であ
	品、高品(1999) (1997) シガドロ・02012 を超れる12.512水洞(49 る。
	または
	・ 観測時間内に15.625Hz以下, 312.5Hz以上のデータが両方ある。
1-40Hz	レンジアップ
	観測時間内に19.53125Hz以上のデータが1つ以上ある。
	レンジ不変
	観測時間内のすべてのデータが19.53125Hz未満である。
	観測时间内の9へ(のナータか19.53125HZ木満(ある。

Note _

- ・ 各周波数入力レンジの下限(たとえばレンジ[16-800Hz]の16Hz)以下の周波数が入力された場合は、[-----]を表示する場合があります。カーソル測定ではゼロを表示することがあります。
 ・ 周波数入力レンジより高い周波数の信号が入力されると、エリシング(1.6節参照)が発生し周波
 - 数を正しく測定できません。この影響で誤動作を認識できず,回転センサ信号に関係のある測 定ファンクションまで正しく求められなくなる場合があります。選択された周波数入力レンジ の範囲内の信号を入力してください。

● トルクメータ信号の入力レンジの選択

固定レンジとオートレンジの2種類があります。

・固定レンジ
 入力レンジを次の中から選択できます。
 50Vpk, 20Vpk, 10Vpk, 5Vpk, 2Vpk, 1Vpk

・オートレンジ

入力レンジ設定で[Auto]を選択するとオートレンジになります。入力信号の大きさによって、自動的にレンジが切り替わります。切り替わる条件や注意事項は「5.3 直接入力のときの測定レンジを設定する」と同じです。切り替わるレンジの種類は 上記の固定レンジと同じです。 15

15.3 入力フィルタを選択する

操作キー

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボッ クスが表示されます。 ファームウエアバージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示され、モータモジュールの設定はできません。また、モータモジュール

キーだけが表示され,モータモジュールの設定はできません。また,モータモジュール がエレメント番号4のスロットに装着されていないとき,[Motor Module]のメニューは 表示されません。

- ラインフィルタを選択する
 - 3. ジョグシャトルを回して, [Line Filter]を選択します。
 - 4. SELECTキーを押します。ラインフィルタ選択ボックスが表示されます。
 - 5. ジョグシャトルを回して、[OFF]~[500Hz]のどれかを選択します。
 - 6. SELECTキーを押して、ラインフィルタを確定します。CH7とCH8に同じフィル タが設定されます。
- ゼロクロスフィルタを選択する
 - 3. ジョグシャトルを回して, [Zero Cross Filter]を選択します。
 - 4. SELECTキーを押します。ゼロクロスフィルタ選択ボックスが表示されます。
 - 5. ジョグシャトルを回して, [OFF]~[500Hz]のどれかを選択します。
 - 6. SELECTキーを押して、ゼロクロスフィルタを確定します。CH7とCH8に同じ フィルタが設定されます。

モータモジュールには、下記の2種類のフィルタがあります。

● ラインフィルタの選択

回転センサ信号やトルクメータ信号を測定する回路(CH7とCH8)に挿入されます。高周 波ノイズを除去します。カットオフ周波数を次の中から選択できます。OFFを選択する と、フィルタ機能は働きません。 OFF、100Hz、500Hz

● ゼロクロスフィルタの選択

周波数測定回路だけに挿入されます。入力信号の振幅の中央値レベルを入力信号が横切 ることをゼロクロスといいます。このゼロクロスの点を、より精度よく検出するための フィルタです。本機器は、設定された回転センサ信号やトルクメータ信号の入力レンジ (15.2節参照)の約3.5%のヒステリシスをもたせて、ゼロクロスを検出しています。 カットオフ周波数を次の中から選択できます。ゼロクロスフィルタがOFFのとき、上記 のラインフィルタがONであれば、ラインフィルタで設定されたカットオフ周波数がゼ ロクロスフィルタとして有効になります。 OFF、100Hz、500Hz

Note _

- ・回転センサの信号タイプが[Pulse]のとき、CH7のラインフィルタとゼロクロスフィルタの機能 は働きません。
- ・ 高調波測定のPLLソース(6.4節参照)として回転センサ信号またはトルクメータ信号を設定する というような場合に、信号のノイズ除去をするために入力フィルタを利用できます。

15.4 回転速度を測定するためのスケーリング係数,パルス数,単位を設定する

操作キー

表示されません。

操作

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボッ クスが表示されます。 ファームウエアバージョン2.01より前の製品(PZ4000)では、[Power Module]のソフト キーだけが表示され、モータモジュールの設定はできません。また、モータモジュール がエレメント番号4のスロットに装着されていないとき、[Motor Module]のメニューは

●回転センサの信号を換算するためのスケーリング係数を設定する

- 3. ジョグシャトルを回して、Speed(Ch7)の[Scaling]を選択します。
- 4. SELECTキーを押します。スケーリング係数設定ボックスが表示されます。
- 5. ジョグシャトルを回して,スケーリング係数を設定します。 ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

●回転センサの信号タイプが[Pulse]のときの1回転あたりのパルス数を設定する

- 3. ジョグシャトルを回して, [Pulse N]を選択します。
- 4. SELECTキーを押します。パルス数設定ボックスが表示されます。
- 5. ジョグシャトルを回して、パルス数を設定します。
 - ジョグシャトルによる入力方法については,「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

	Motor	Module	
	Speed (Ch7)	Torque(Ch8)	Pm
Range	50Vpk	50Vpk	
Sense Type	_AnalogPul:	se	
Freq Range Line Filter Zero Cross Filter	2k-200kHz 0FF		
Scaling 5 1	1.0000	1.0000	1.0000
Unit	rpn	Nn	w
Pulse N	□1 60		
Pole Sync Speed Source	2 CHZ		

● 回転速度の単位を設定する

- 3. ジョグシャトルを回して, Speed(Ch7)の[Unit]を選択します。
- 4. SELECTキーを押します。キーボードが表示されます。
- 5. キーボードを操作して、単位を入力します。 キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

15

```
解 説
```

● スケーリング係数の設定

回転センサの信号を,換算するための係数を設定できます。0.0001~99999.9999の 範囲で設定できます。

・回転センサの信号タイプが[Analog]のとき 入力電圧1Vあたりの回転数を設定すると、下記の演算式により回転速度が換算され ます。

回転速度Speed=スケーリング係数×回転センサからの入力電圧

- ・回転センサの信号タイプが[Pulse]のとき
 次項の「●パルス数の設定」の演算式中のスケーリング係数として使用されます。
- パルス数の設定

1回転あたりのパルス数を設定します。1~9999の範囲で設定できます。15.2節で回転 センサの信号タイプを[Pulse]にしたときに有効になります。

- *1 回転センサからの入力パルス数が1分間あたりの場合,回転速度の単位はrpmになります。
- *2回転センサの信号が変速された信号の場合,スケーリング係数(前項参照)を設定して変速前の回転速度を求めることができます。
- 回転速度の単位の設定
 - ・文字数
 - 8文字以内。
 - ・文字の種類
 - キーボードに表示されている文字とスペース。

15.5 トルクを測定するためのスケーリング係数,単位を 設定する

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

操作キー

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボックスが表示されます。

ファームウエアバージョン2.01より前の製品(PZ4000)では, [Power Module]のソフト キーだけが表示され,モータモジュールの設定はできません。また,モータモジュール がエレメント番号4のスロットに装着されていないとき, [Motor Module]のメニューは 表示されません。

● トルクメータの信号を換算するためのスケーリング係数を設定する

- 3. ジョグシャトルを回して、Torque(Ch8)の[Scaling]を選択します。
- 4. SELECTキーを押します。スケーリング係数設定ボックスが表示されます。
- 5. ジョグシャトルを回して、スケーリング係数を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

● トルクの単位を設定する

- 3. ジョグシャトルを回して、Torque(Ch8)の[Unit]を選択します。
- 4. SELECTキーを押します。キーボードが表示されます。
- 5. キーボードを操作して,単位を入力します。

キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

Motor Module
Speed(Ch7) Torque(Ch8) Pm
Range50Upk
Sense Ty
Freq Ban Nn
Filt PHOERT Zero Cro Filt Fi
Scaling SPACE * Z + - : Z () R. J 000
Unit <u>rpm Nm W</u>
Pulse N 60
Pole2 Sync Speed SourceCH2

解 説

● スケーリング係数の設定

トルクメータの信号を、モータのトルクに換算するための係数を設定できます。 0.0001~99999.9999の範囲で設定できます。入力電圧1Vあたりのトルクを設定する と、下記の演算式によりトルクメータからの入力電圧から、トルクが換算されます。

トルクTorque=スケーリング係数×トルクメータからの入力電圧

● トルクの単位の設定

- ・文字数
 - 8文字以内。
- ・文字の種類
 - キーボードに表示されている文字とスペース。

Note ____

15.7節で求めているモータ出力の単位を「W」にするには、トルクの単位をNmにしてください。

15.6 同期速度とすべりを演算するためのモータの極数を 設定する

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボッ クスが表示されます。

ファームウエアバージョン2.01より前の製品(PZ4000)では, [Power Module]のソフト キーだけが表示され,モータモジュールの設定はできません。また,モータモジュール がエレメント番号4のスロットに装着されていないとき, [Motor Module]のメニューは 表示されません。

● モータの極数を設定する

- 3. ジョグシャトルを回して, [Pole]を選択します。
- 4. SELECTキーを押します。極数設定ボックスが表示されます。
- 5. ジョグシャトルを回して、極数を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
- 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

ŀ	Motor Module				
		Speed(Ch7) Torque(Ch8) Pm			
	Range	500pk500pk			
	Sense Type	Analog _Pulse _			
	Freq Range	_ 2k-200kHz_			
	Filter Zero Cross	OFF			
	Filter	OFF			
	Scaling	1.0000 1.0000 1.0000			
	Unit	<u>rpn Nn W</u>			
	Pulse N				
	Pole Sync Speed				
	Source	CH2			

● 周波数測定ソース(モータに供給される電圧または電流の入力チャネル)を設定する

- 3. ジョグシャトルを回して, [Sync Speed Source]を選択します。
- 4. SELECTキーを押します。周波数測定ソース設定ボックスが表示されます。
- 5. ジョグシャトルを回して, [CH1]~[CH8]のどれかを設定します。
- 6. SELECTキーを押して、周波数測定ソースを確定します。

	Speed (Ch7)	Torque(Ch8)	Pm
Range	50Vpk	•Select	1
Sense Type	_Analog _Pul	CH1	
Freq Range	_ 2k-200kHz	CHZ	
Filter	OFF	СНЗ	
Filter	OFF	CH4	
Scaling	1.0000	CH5	1.0000
Unit	rpn	CHG	w
Pulse N	60	CH7	
Pole	2	CH8	
Source	CHZ		J

解 説

● モータの極数の設定

 \cdot CH1 \sim CH6

1~99の範囲で設定できます。測定対象のモータの極数を設定します。

● 周波数測定ソースの設定

次の中から選択できます。

通常はモータに供給される電圧または電流の入力チャネルを設定します。モータに 供給される電圧または電流以外の信号の周波数を選択した場合,同期速度が正しく 求められない場合があります。

CH7, CH8
 通常, CH7とCH8には回転速度とトルクの信号が入力されます。これらのチャネル
 に入力される信号を周波数測定ソースとして選択できますが、同期速度が正しく求められません。

● 同期速度の演算式

同期速度の単位がrpmのときの演算式を以下に示します。

● すべりの演算式

回転速度や同期速度の単位がrpmのときの演算式を以下に示します。

Note _

周波数測定ソースには、モータに供給される電圧または電流のうち、ひずみやノイズが少ない 安定した信号を選択してください。必要に応じてゼロクロスフィルタ(5.6節参照)を設定してく ださい。

15.7 モータ出力を演算するためのスケーリング係数,単 位を設定する

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

操作キー

- 1. INPUTキーを押します。Input設定メニューが表示されます。
- 2. [Motor Module]のソフトキーを押します。モータモジュール設定ダイアログボッ クスが表示されます。

ファームウエアバージョン2.01より前の製品(PZ4000)では, [Power Module]のソフト キーだけが表示され,モータモジュールの設定はできません。また,モータモジュール がエレメント番号4のスロットに装着されていないとき, [Motor Module]のメニューは 表示されません。

- モータ出力を演算するためのスケーリング係数を設定する
 - 3. ジョグシャトルを回して, Pmの[Scaling]を選択します。
 - 4. SELECTキーを押します。スケーリング係数設定ボックスが表示されます。
 - 5. ジョグシャトルを回して、スケーリング係数を設定します。 ジョグシャトルによる入力方法については、「4.1 数値や文字列を入力する」をご覧く ださい。
 - 6. SELECTキーまたはESCキーを押して,設定ボックスを閉じます。

ŀ	Motor Module					
		Speed(Ch7) Torque(Ch8) Pm				
	Range	500pk500pk				
	Sense Type	_AnalogPulse _				
	Freq Range Line Filter Zero Cross Filter	2k-200kHz OFF				
	Sca1ing	1.0000 1.0000 1.0000				
	Unit	NnW				
	Pulse N	60				
	Pole Sync Speed Source	2 CH2				
- U						

● モータ出力の単位を設定する

- 3. ジョグシャトルを回して、Pmの[Unit]を選択します。
- 4. SELECTキーを押します。キーボードが表示されます。
- 5. キーボードを操作して、単位を入力します。

キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

Motor Module			
	Speed(Ch7) Torque(Ch8) Pn		
Range	500pk500pk		
Sense Ty			
Freq Ran	ω		
Filt	INSERT		
Zero Cro	1234567890 BS DIS ENT		
Filt	M A B C D E F G H I J K L M		
Sca1ing	^{CLR} INIOIPIQIRISITUUUUXIYIZ ^{SPACE} ★∠+-::Z(DR.u.) 000		
Unit			
Pulse N	60		
Pole	22		
Sync Spee Sourc	2d :eCHZ		

解 説

● スケーリング係数の設定

回転速度とトルクからモータ出力(メカニカルパワー)を演算するための係数を設定できます。0.0001~99999.9999の範囲で設定できます。演算式を以下に示します。演算 式中のスケーリング係数が「1」のとき,通常のモータ出力が求められます。

モータ出力Pm(W)

=スケーリング係数×トルク^{*1}(N·m)× $\frac{2 \times \pi \times \square 転速 g^{*2}(rpm)}{60}$

C

*1 15.5節で求められるトルク *2 15.4節で求められる回転速度

● モータ出力の単位の設定

- ・文字数
- 8文字以内。
- ・文字の種類
 - キーボードに表示されている文字とスペース。

Note _

15.7節で求めているモータ出力の単位を「W」にするには、トルクの単位をNmにしてください。

15.8 モータ効率とトータル効率を演算する

本機器が電力測定モジュールで測定する有効電力と、15.7節で求められるモータ出力から、モータ効率(モータが消費する電力に対するモータ出力の比率)やトータル効率(モータ が消費する電力だけでなく、モータに電力を送るときに経由する変換器が消費する電力も 含めた全体の消費電力に対するモータ出力の比率)を演算できます。以下に演算例を示しま す。

モータの入力が三相4線式(3P4W)の場合

・エレメント1と2と3にモータの入力を結線(3章参照)します。

・結線方式(3.7と5.2節参照)は[3P4W]を選択します。

変換器の入力とモータの入力がどちらも単相2線式(1P2W)の場合

・エレメント1に変換器の入力を、エレメント2にモータの入力を結線します。

・結線方式は[1P2W-1P2W]を選択します。

変換器の入力が単相2線式(1P2W)で、モータの入力が三相3線式(3P3W)の場合

・エレメント1に変換器の入力を、エレメント2と3にモータの入力を結線します。

結線方式は[1P2W-3P3W]を選択します。

モータ効率
$$\eta$$
 mB(%) = $\frac{ \Xi - \varphi Ш D^{*}(W)}{\Sigma B(W)} \times 100$
トータル効率 η mA(%) = $\frac{ \Xi - \varphi Ш D^{*}(W)}{\Sigma A(W)} \times 100$
* 15.7節で求められるモータ出力

IM 253710-01

変換器の入力が単相2線式(1P2W)で、モータの入力が三相3線式(3P3W)の場合

・エレメント1と2にモータの入力を、エレメント3に変換器の入力を結線します。
 ・結線方式は[3P3W-1P2W]を選択します。

Note _

- この結線の場合、デルタ演算機能(10.2節参照)を利用して、3P3W>3V3A変換やDelta>Star変換ができます。
- · 3P3W>3V3A変換で、測定していない1つの線間電圧と相電流が求められます。
- · Delta>Star変換で,線間電圧から3つの相電圧が求められます。

変換器の入力が三相3線式(3P3W)で、モータの入力が単相2線式(1P2W)の場合

・エレメント1と2に変換器の入力を、エレメント3にモータの入力を結線します。

· 結線方式は[3P3W-1P2W]を選択します。

モータ効率
$$\eta$$
 mB(%)= モータ出力*(W) × 100
トータル効率 η mA(%)= モータ出力*(W) × 100
× 15.7節で求められるモータ出力

第16章 トラブルシューティングと保守・点検

16.1 故障? ちょっと調べてみてください

異常時の対処方法

● 画面にメッセージが表示されているときは、次ページ以降をお読みください。

[●] サービスが必要なとき、または対処方法どおりにしても正常に動作しないときは、お買い求め先まで修理をお申しつけください。

		参照節
電源スイッチをONにしても,	画面になにも表示されない。	
	電源コードを本体の電源コネクタと電源コンセントに確実に接続してください。	3.6
	電源電圧を変動許容範囲内にしてください。	3.6
	 画面の設定を確認してください。	14.3
	ヒューズが切れていないかを確認してください。	15.5
表示データがおかしい。		
	周囲温度や湿度が仕様範囲内かを確認してください。	3.2
	ノイズの影響がないかを確認してください。	3.1, 3.4
	測定用ケーブルの結線を確認してください。	3.4~3.10
	結線方式を確認してください。	3.7~3.10, 5.3
	ラインフィルタがOFFになっていることを確認してください。	5.7
	測定/演算区間の設定を確認してください。	10.1
	電源をもう一度OFF/ONしてください。	3.11
キー操作ができない。		
		-
		15.3
トリガがかからない。		
	トリガ条件を確認してください。	7章
	トリガソースが入力されていることを確認してください。	7.2
 高調波測定ができない。		
		6.4
		6.4, 17章
	プリンタヘッドが痛んでいるか,消耗している可能性があります。 サービスが必要です。	_
		12.2
		12.4
		_
 選択したメディアに、データ	を保存できない。	
	メディアのフォーマット形式を確認してください。必要に応じて,フォーマット してください。	12.4
	 メディアが書き込み禁止になっていないかを確認してください。	_
		12.4
 通信インタフェースによる設	定/動作制御ができない。	
	GP-IBアドレスやシリアルインタフェースのパラメータ設定が、仕様に合っているかを確認してください。	*
		_*
	ーズマニュアルM253710-11をご覧ください。	

16.2 エラーメッセージと対処方法

エラーメッセージ

本機器を使用中に、画面にメッセージが表示されることがあります。その意味と対処方法 を説明します。なお、メッセージは日本語/英語のどちらでも表示することができます (15.2節参照)。対処方法でサービスが必要なときは、お買い求め先まで修理をお申しつけ ください。

以下のエラーメッセージは、上段が日本語、下段が英語です。また、これ以外にも通信関 連のエラーメッセージがあります。これらは別冊の通信インタフェースユーザーズマニュ アル(IM253710-11)に記載されています。

実行エラー

Error in Execution

コード	メッセージ	対処方法	参照節
10	ACQがタイムアウトしました。 Occure ACQ time out.	_	_
11	PLLソースの周波数が測定できません。 Cannot measure PLL frequency.	PLLソースの入力を確認してください。 Check input level.	6.4
601	入力ファイル名,もしくはSCSI IDが不適当です。 Invalid file name or SCSI ID.	ファイル名またはSCSI ID番号を確認してください。 Check file name or SCSI ID.	12.3, 12.5
602	メディアが入っていないか指定SCSIデバイス が存在しません。 No media inserted or no SCSI device.	メディアの有無, SCSIデバイスの接続, SCSI ID 番号の確認をしてください。 Make sure that the storage medium is inserted (if applicable), and check the SCSI device connection and the SCSI ID.	12.1~12.3
603	指定SCSIデバイスが存在しないかメディアが 入っていません。 No SCSI device or no media inserted.	SCSIデバイスの接続, SCSI ID番号, メディアの 有無の確認をしてください。 Check the SCSI device connection and the SCSI ID, and make sure that the storage medium is inserted (if applicable).	12.1~12.3
604	メディアが異常です。 Media failure.	メディアを確認してください。 Check the storage medium.	_
605	対象ファイルがありません。 File not found.	ファイル名,メディアを確認してください。 Check the file name and the storage medium.	_
606	メディアが書き込み禁止になっています。 Media is protected.	メディアのライトプロテクトスイッチをOFFに してください。 Set the disk's (medium's) write protect switch to OFF.	_
607	メディアアクセス中にメディア抜き差しが 行われました。 Media was removed while accessing.	メディアを確認してください。 Check the storage medium.	_
608, 609	同じファイル名が存在します。 File already exists.	_	12.5
610	不正文字が含まれています。 Contains invalid characters.	-	12.5
611, 612	メディアの空き容量が不足しています。 Media full.	不要なファイルを消すか,新しいメディアを使用して ください。 Delete unnecessary file(s) or use another disk.	12.4~12.7
613	ファイルシステムが異常です。 File system failure.	別のディスクで再確認してください。それでもだめな ときは、サービスが必要です。 Check using another disk. If the same message still appears, maintenance service is required.	_
614	ファイルが消去禁止になっています。 File is protected.		12.8

コード	メッセージ	対処方法	参照節
615	物理フォーマットエラーです。 Physical format error.	フォーマットし直してください。 再度同じエラーが出る場合,本機器ではそのメディ アはフォーマットできません。 Reformat the medium. If the same error occurs, the	12.4
		instrument is probably unable to execute a format on this medium.	
616 ~620	ファイルシステムが異常です。	別のメディアで再確認してください。それでもだめな ときは,サービスが必要です。	-
	File system failure.	Check using another disk. If the same message still appears, maintenance service is required.	
621	ファイルが壊れています。 File is damaged.	ファイルを確認してください。 Check the file.	_
622 ~641	ファイルシステムが異常です。	別のメディアで再確認してください。それでもだめな ときは、サービスが必要です。	_
0+1	File system failure.	Check using another disk. If the same message still appears, maintenance service is required.	
642	指定SCSIデバイスのメディアがありません。 No media exists in SCSI device.	SCSIデバイスのメディアの有無を確認してください。 Check that the storage medium is correctly inserted in the SCSI device.	_
643 ~653	メディアが異常です。 Media failure.	メディアを確認してください。 Check the medium.	_
654	メディアが異常です。 Modia failura	フロッピーディスクのフォーマットタイプを確認して ください。 Chack the format type of the floppy disk	-
656	ファイルシステムが異常です。	別のメディアで再確認してください。それでもだめな	_
~664	File system failure.	ときは,サービスが必要です。 Check using another disk. If the same message still appears, maintenance service is required.	
665	他機種でセーブしたファイルか,あるいは 互換性のないパージョンのファームウエアで セーブしたファイルです。 ロードできません。 Cannot load this file format. File was stored or other models or other versions.	- 1	_
666	メディアにアクセス中です。 File is now being accessed.	アクセスが終わってから実行してください。 Execute after access is made.	_
667	スタート中は実行できません。	START/STOPキーを押して、波形の取り込みをストップしてから行ってください。	4.3
668	Cannot be executed while running. '.HDR' ファイルがありません。 Cannot find ' HDR' file	Press STAR1/STOP key to stop acquisition. ファイルを確認してください。 Check the file	12.6
669	'.INF' ファイルがありません。 Cannot find '.INF' file.	ファイルを確認してください。 Check the file.	-
670	表示しているチャネルがありません。 No ch is displayed.	対象チャネルの表示をONにしてください。 Turn ON the display of the appropriate channel.	9.1
671	セーブ対象データがありません。 Save data not found.	保存データの有無を確認してください。 Check for presence of data.	12.5~12.7
672	SCSIインタフェースが内蔵されていないモデ ルです。 This model does not have the SCSI interface.	_	iiページ
673	SCSIコントローラーが異常です。 SCSI controller failure.	サービスが必要です。 Maintenance service is required.	_
674	ファイルシステムを初期化中です。 Initializing file system.	しばらくお待ちください。 Please wait.	12.4
675	このファイルは読み込みできません。 Cannot load this file.	_	-
679	プリンタエラーです。 Printer error.	サービスが必要です。 Maintenance service is required.	-

コード	メッセージ	対処方法	参照節
680	リリースアームを「HOLD」位置にしてくださ	-	13.1
	Move the release arm to the "HOLD" position.		
681	ロール紙がありません。 Paper empty.	ロール紙を補給してください。 Load a roll chart.	13.1
682, 683	プリンタの温度が異常です。 Printer over heat.	直ちに電源を切ってください。サービスが必要です。 Power off immediately.	_
684	プリンタが内蔵されていないモデルです。 No built-in printer on this model	オプションのプリンタがあるかどうか、仕様を確認 してください。 Check the specifications to see whether or not	iiページ
005		the optional printer is provided.	
685	ノリンタタイムアウト。 Printer time out.	サービスか必要です。 Maintenance service is required.	—
686	セントロニクスプリンタがエラーです。 Centronics printer error.	プリンタの電源をOFF→ONしてください。 Turn the power of the printer from OFF to ON.	_
687	セントロニクスプリンタがオフラインです。 Centronics printer off-line.	_	-
688	セントロニクスプリンタが紙切れです。 No paper.	_	_
689	セントロニクスプリンタを他の機器が使用中 です。 Centronics interface in use.	_	_
690	セントロニクスプリンタが検出できません。	プリンタの電源をONにしてください。 コネクタの接続を確認してください。	_
	Can't detect printer.	Turn ON the printer. Check connectors.	4.0
701, 702	スタート中はコピーできません。 Cannot be executed while running.	START/STOPキーを押して、波形の取り込みをストップしてから行ってください。 Press START/STOP key to stop acquisition.	4.3
703	Undoすべきデータがありません。	イニシャライズ、オートセットアップ直前のデータ	_
	There is no undo-data.	がないのでUndoできません。 Undo is not possible since data which was present before initialization and auto set-up is now not available.	
704	スタート中は,実行できません。	START/STOPキーを押して,波形の取り込みをストップしてから行ってください。	4.3
705	Can not be executed while running. 操作できません。メディアヘアクセス中です。	Press START/STOP key to stop acquisition. アクセス終了までお待ちください。	_
706	Can not operate while accessing medium. 出力中は操作できません。	Wait Until access has completed. 出力終了までお待ちください。	_
707	Can not operate during naid copy. 出力中はスタートできません。 Can not Start while data out	Wait until output This completed. 出力終了までお待ちください。 Wait until output is completed	_
708	スタート中は出力できません。	START/STOPキーを押して、波形の取り込みをストップしてから行ってください。	4.3
709	スタートできません。 メディアにアクセス中です。	Press START/STOP key to stop acquisition. アクセスが終了するまでお待ちください。	_
	Can not start while accessing.	Wait until access has completed.	
710	該当するファイルがありません。 File not found.	ファイルを確認してください。 Check the file.	-
711	ハードコピー中のファイル操作はできません。 File operation not allowed during hard copy.	出力終了までお待ちください。 Wait until the hard copy completes.	_
712	この画面イメージは圧縮できません。 Can not compress this hardcopy image.	圧縮の設定をOFFにしてください。 Turn off compression switch.	13.4
713	FFT演算をするためのデータ数が不足していま	観測時間を長くするか演算区間を広くしてください。	11.1, 11.3
	9 °. Not enough data points for taking the FFT.	Make the observation time longer or widen the computation region.	

設定エラー Error in Setting

コード	メッセージ	対処方法	参照頷	ជ័
800	日付・時刻の設定が正しくありません。 Illegal date-time.	正しく設定してください。 Set the correct date and time.		
801	ファイル名が正しくありません。 Illegal file name.	使用不可能な文字があるか, MS-DOSの制限ファイ ル名です。別のファイル名を入力してください。 The file name contains characters which are not allowed or the file name is not a valid MS-DOS file name. Enter another file name.	12.5	
802	通常測定モードのときは設定できません。 Cannot be set in the normal measurement mode.	高調波測定モードに設定してください。 Set the measurement mode to harmonic.	5.1	
803	高調波測定モードのときは設定できません。 Cannot be set in the harmonic measurement mode.	通常測定モードに設定してください。 Set the measurement mode to normal.	5.1	
804	スタート中は、この設定は変更できません。	START/STOPキーを押して、波形の取り込みをストップしてから行ってください。	4.3	
805	Calific Change this parameter while furthing. アベレージがONの場合は、この設定はできません。	アベレージをOFFに設定してください。	10.5	
	Cannot change this parameter when averaging is ON.	Turn OFF the averaging function.		
806	ユーザーファンクションのいずれかがONの場合 は、この設定はできません。 Cannot change this parameter when any of the user-defined functions is ON.	ユーザーファンクションをすべてOFFに設定してくた さい。 Turn OFF all user-defined functions.		
807	MMATH1とMATH2のいずれかがONの場合, この設定はできません。 Cannot change this parameter when either MATH1 or MATH2 is ON.	MATH1とMATH2の両方をOFFに設定してください。 Turn OFF both MATH1 and MATH2.		
808	数値表示のとき,この設定はできません。 Cannot change this parameter during numerical display.	_	_	
809	ベクトル表示のとき,この設定はできません。 Cannot change this parameter during vector display.	_	_	
810	バーグラフ表示のとき, この設定はできません。 Cannot change this parameter during bar graph display.	_	_	
814	ラベル名が重複しています。 Duplicated Name.	別のラベル名にしてください。 Change the label string.	9.7	
817	変更できません。 Cannot change.	X-YメニューのX Traceを変更してください。 Please change X Trace in the X-Y menu.		
819	チャネル表示がOFFのとき,またはMathの 設定が無効のときは設定できません。 Cannot change when Channel Display is OFF or Math settings are invalid.	チャネル表示をONにするか,演算を設定してくだ さい。 Set the channel display ON or make appropriate Math settings.	9.1	
823	スタート中は変更できません。 Cannot change when started.	-	-	
827	式が正しく定義されていません。 Illegal math expression.	正しい式を入力してください。 Input a correct computing equation.		11.2
834	SCSI ID番号が重複しています。 Duplicate SCSI ID.	SCSIデバイスごとに異なる番号を設定してください。 Set different ID numbers.		
840	入力数値が正しくありません。 Illegal input value.	-	_	

システムエラー Error in System Operation

コード	メッセージ	対処方法	参照節
901	設定データがバックアップできませんでした。 Failed to backup setup data.	初期化します。バックアップ用電池が消耗している 可能性があります。 Will initialize.	3.11
902	システムRAMが異常です。 System RAM failure.	サービスが必要です。 Maintenance service is required.	_
903	システムROMが異常です。 System ROM failure.	サービスが必要です。 Maintenance service is required.	_
904	システムRAMが異常です。 System RAM failure.	サービスが必要です。 Maintenance service is required	_
905	システム構成エラー。 System failure.	入力モジュールを正しく装着してください。 Install the input modules correctly.	3.3
906	冷却ファンが停止しています。 Fan stopped.	直ちに電源を切ってください。サービスが必要です。 Power off immediately.Maintenance service is required.	_
907	バックアップ電池が消耗しました。 Backup battery is flat.	電池の交換はサービスが必要です。 Maintenance service is required to replace the backup battery.	_
908	機内温度が異常です。 Internal temperature is too high.	直ちに電源を切ってください。サービスが必要です。 Power off immediately.Maintenance service is required.	_
909	サム値が不正です。 Illegal SUM value.	サービスが必要です。 Maintenance service is required.	_
910	メモリのリード/ライトが異常です。 RAM read/write error.	サービスが必要です。 Maintenance service is required.	_
911	メモリバスエラーです。 Memory bus error.	サービスが必要です。 Maintenance service is required.	-
912	通信ドライバーエラーです。 Fatal error in Communication-driver.	サービスが必要です。 Maintenance service is required.	_
914	通信タイムアウトエラーです。 Time out occurs in Communications.	_	_
915	EEPROM SUMエラーです。 EEPROM SUM error.	EEPROMが壊れている可能性があります。 サービスが必要です。 EEPROM may be damaged. Maintenance service is required.	_
917	入力モジュールが装着されていません。 No module installed.	入力モジュールを装着してください。 Install the module.	3.3
919	現在のモジュール装着状態と設定データが 矛盾しています。 Module installation condition and setup parameters do not match.	初期化します。 The instrument is initialized.	_
920	Null値のSUMエラーです。 SUM error of NULL value.	Null値を0に初期化します。 The Null value is reset to 0.	_

Note _____

サービスが必要になったときは、本機器を初期化してみてください。復帰する場合があります。

16.3 自己診断(セルフテスト)をする

操作キー

 ・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Selftest]のソフトキーを押します。セルフテストメニューが表示されます。
- 3. [Test Item]のソフトキーを押します。テスト項目選択メニューが表示されます。
- [Memory]または[Key Board]のどちらかのソフトキーを押して、テスト項目を選択します。
 [Memory]を選択したときは、次ページの「●メモリテストをする」に進みます。

[Memory]を選択したときは、次ページの | ●メモリテストをする」に進みます。 [Key Board]を選択したときは、次ページの「●操作キーとキーボードのテスト をする」に進みます。

16

● メモリテストをする

- 5. [Memory Test]のソフトキーを押します。メモリ選択メニューが表示されます。
- 6. [System] ~[VRAM]のどれかのソフトキーを押して、メモリを選択します。
- 7. [Test Exec]のソフトキーを押します。テストが実行されます。

Selftest Test Iten Memory Memory Test Systen	
ACQ RAM	
Register Sub CPU	
VRAM	
Test Exec	

Sel	itest_itest_i	Test Item	
<<<<< Menor	J Test >>>>>	Menory	
Test Item:	System Memory	▲ Memory Test	
Main Memory: Backum Memoru:	Pass Pass	System	
ROM:	Pass Sun = 1234H	Ť	
Test Co	npleted.		
		Tost Evec	
		TIEST EXEC	

77

- 操作キーとキーボードのテストをする
 - 操作キーのテストをする
 - 5. [Test Exec]のソフトキーを押します。
 - 6. フロントパネルの操作キーを押します。押したキーのテストが実行されます。
 - 矢印キー(<または>)を押します。矢印キーを押すごとに、インジケータが1つず つ点灯します。
 - 8. ESCキーを2回続けて押すと、操作キーテストから抜け出せます。
 - ・キーボードテストをする
 - 9. [Soft Key]のソフトキーを押します。キーボードが表示されます。
 - 10. キーボードを操作します。入力した文字がキーボードの入力欄に正しく表示されることを確認します。
 - キーボードの操作については、「4.1 数値や文字列を入力する」をご覧ください。

解 説

● メモリテスト

内部のROMやRAMが正常かどうかをテストします。[Pass]が表示されれば正常です。 [Failed]が表示されたときは、お買い求め先までご連絡ください。

- 操作キーとキーボードのテスト
 - フロントパネルのキーが正常かどうかをテストします。押したキーの名称が正しく 表示されれば正常です。
 - ・矢印キー(<または>)を押して、インジケータが点灯または消灯すれば正常です。
 - ・操作キーテストから抜け出すには、ESCキーを2回続けて押します。
 - ・正しく表示されないときは、お買い求め先までご連絡ください。

16.4 システムの状態を確認する

操作キー

・操作途中で、メニューから抜け出すときは、ESCキ ーを押します。

操作

- 1. MISCキーを押します。Miscメニューが表示されます。
- 2. [Information]のソフトキーを押します。インフォメーションウインドウが表示されます。

					T
				Í	í ——
				Misc	
	Information			•	
ſ				Information	
Mode1:	PZ4000				
Version:	1.00				
				•	
**** Module	Configuration ****			GPIB/RS232	
	Model Calibra	tion Date	Status		
Element1:	253752(20A Shunt) 99/02/2	5 11:52:00	OK		
Element2:	253752(20A Shunt) 99/02/2	5 11:52:00	OK	•	
Element3:	253752(20A Shunt) 99/02/2	5 11:52:00	OK	SCSI ID	
Element4:	253752(20A Shunt) 99/02/2	5 11:52:00	OK		
********	Options *********				
ACQ Memory:	4MWord/CH				
Printer:	Yes				
SCS1:	No				
				M	
				Config	
Link Date:	99/02/25 Thu 11:39				11
				Saltiant	
				Sentest	
				Novt	
				1/2	11
				·	1

解 説

システムの状態の表示

モデル,ROMバージョン,モジュールの構成,オプションの有無などの確認ができます。

16.5 電源ヒューズを交換する

警告

- 火災防止のため指定された定格(電圧・電流・タイプ)のヒューズだけを使用して ください。
- 必ず電源スイッチをOFFにして、電源コードを抜いてから、ヒューズの交換をしてください。
- ヒューズホルダを短絡させないでください。

ヒューズの定格

本機器で使用している電源ヒューズは、次のものです。

- ・最大定格電圧:250V
- ・最大定格電流:6.3A
- ・タイプ:タイムラグ
- ・規格:UL/VDE認定
- · 部品番号:A1463EF

交換方法

次の方法で電源ヒューズを交換してください。

- 1. 電源スイッチをOFFにします。
- 2. 電源コードを電源コネクタから抜きます。
- 3. 電源コネクタ側にあるヒューズホルダの凹部にマイナスドライバの先を当て、矢 印の方向にドライバを動かして、ヒューズホルダを取り外します。
- 4. ヒューズホルダの先端に装着されている切れたヒューズを取り出します。
- 5. 新しいヒューズをヒューズホルダに装着し、ヒューズホルダを元の場所に取り付けます。

Note .

本体ケース内にあるヒューズは、お客様では交換できません。万一、本体ケース内のヒューズ が切れていると思われるときは、お買い求め先までご連絡ください。下記に本体ケース内で使 われているヒューズの定格を記載します。

使用場所	最大定格電圧	最大定格電流	タイプ	規格
SCSIボード	250V	800mA	タイムラグ	VDE/SEMKO認定

16.6 交換推奨部品

保証書に記載の保証期間・保証規定に基づき,当社は本機器を保証しております。保証規 定により,下記の摩耗部品は保証対象外です。使用状況により交換周期が異なります。下 表は目安としてご覧ください。部品交換はお買い求め先にお申し付けください。

部品名称	推奨交換周期
内蔵プリンタ 冷却用ファン 液晶バックライト バックアップ電池 (リチウムバッテリ)	通常の使用状態で,プリンタ用ロール紙(部品番号:B9850NX)120巻相当 10000時間 3年 3年

17.1 入力部

項目	仕様
入力形状	プラグイン入力
 スロット数	4
最大レコード長	100kワード/CH 1Mワード/CH(オプション) 4Mワード/CH(オプション)

17.2 表示部

 項目	
ディスプレイ	6.4型カラーTFT液晶ディスプレイ
	640(水平)×480(垂直) ドット
波形表示画素数	501(水平)×432(垂直) ドット
表示更新周期	観測時間と設定レコード長により変わります。 通常測定モードで、観測時間100ms,設定レコード長100kワード、8チャネル使用時、数値演算 ON,波形演算OFFのとき、約2sです。 高調波測定モードで、観測時間100ms,設定レコード長100kワード、8チャネル使用時、数値演算 ON,波形演算OFFのとき、約2sです。

* 液晶表示器には、全表示画素数に対して0.02%程度の欠陥が含まれる場合があります。

17.3 時間軸

項目	仕様
観測時間	通常測定モード 10µs~1ks (1-2-4ステップ) 高調波測定モード 設定レコード長100kワードのとき,約0.5~1.6s 設定レコード長1Mワード(オプション)のとき,約4.9~16.3s 設定レコード長4Mワード(オプション)のとき,約19.5~65.1s
時間軸確度*	±0.005%
外部クロック入力 (EXT CLK IN)	コネクタ形式:BNCコネクタ 周波数範囲:1kHz~250kHz 入力レベル:CMOS 最小パルス幅:High, Lowともに1µs

* 基準動作状態(17.13節参照)で測定した値です。

17.4 測定ファンクション(測定項目)

通常測定モードの測定ファンクション

各エレメント(電力測定モジュール)ごとに求められる測定ファンクション (測定ファンクションの求め方や演算式は、「付録2」をご覧ください。)

項目	記号と意味
電圧(V)	Urms:真の実効値,Umn:平均値整流実効値校正,Udc:単純平均,Uac:交流成分
電流(A)	Irms:真の実効値,Imn:平均値整流実効値校正,Idc:単純平均,Iac:交流成分
有効電力(W)	P
皮相電力(VA)	S
無効電力(var)	Q
 力率	λ
位相差(°)	φ
	fU:電圧の周波数,fl:電流の周波数
電圧の最大値と最小値(V)	U+pk:電圧の最大値,U-pk:電圧の最小値
電流の最大値と最小値(A)	+pk:電流の最大値, -pk:電流の最小値
クレストファクタ(波高率)	
フォームファクタ(波形率)	
負荷回路の インピーダンス(Ω)	Z
負荷回路の抵抗と リアクタンス(Ω)	Rs:抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の負荷回路の抵抗 Xs:抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の負荷回路のリアク タンス Rp:RとLおよびCが並列に接続されている場合の負荷回路の抵抗 Xp:RとLおよびCが並列に接続されている場合の負荷回路のリアクタンス
Corrected Power(W) (適用規格IEC76-1(1976),	Pc IEEE C57.12.90-1993, IEC76-1(1993))

選択した結線方式(A, B)ごとに求められる測定ファンクション(Σファンクション) (Σファンクションの求め方や演算式は、「付録2」をご覧ください。)

 項目	 記号と意味
電圧(V)	Urms∑:真の実効値,Umn∑:平均値整流実効値校正,Udc∑:単純平均,Uac∑:交流成分
電流(A)	Irms∑:真の実効値,Imn∑:平均値整流実効値校正,Idc∑:単純平均,Iac∑:交流成分
	ΡΣ
	SΣ
無効電力(var)	QΣ
 力率	λΣ
	φΣ
負荷回路の インピーダンス(Ω)	ΖΣ
負荷回路の抵抗と リアクタンス(Ω)	Rs∑:抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の負荷回路の抵抗 Xs∑:抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の負荷回路のリア クタンス Rp∑:RとLおよびCが並列に接続されている場合の負荷回路の抵抗 Xp∑:RとLおよびCが並列に接続されている場合の負荷回路のリアクタンス
Corrected Power(W) (適用規格IEC76-1(1976),	Pc∑ IEEE C57.12.90-1993, IEC76-1(1993))
	η:結線Aに対する結線Bの効率
効率2	1/η:結線Bに対する結線Aの効率

モータモジュールの測定ファンクション

(測定ファンクションの求め方や演算式は,「15章」をご覧ください。)

モータモジュールを適用できるのは、ファームウエアバージョン2.01以降の製品 (PZ4000)です。

 項目	 記号と意味
	Speed:モータの回転速度
トルク	Torque:モータのトルク
	Sync
すべり	Slip
モータ出力	Pm:モータの機械的出力(メカニカルパワー)
 モータ効率 [*]	ηmAまたはηmB:モータが消費する電力に対するモータ出力の比率
トータル効率 [*]	η mAまたは η mB:モータが消費する電力だけでなく,モータに電力を送るときに経由する変換器が 消費する電力も含めた全体の消費電力に対するモータ出力の比率

* エレメント1,2,3への回路結線と本機器で選択する結線方式(A-B)によって、記号ηmAとηmBが、それぞれモータ効率またはトータル効率のどちらかになります。詳細は15.8節をご覧ください。

高調波測定モードの測定ファンクション

各エレメント(電力測定モジュール)ごとに求められる測定ファンクション (測定ファンクションの求め方や演算式は、「付録2」をご覧ください。)

項目	 記号と意味
電圧(V)	$U(k):次数k^{*1}$ の高調波電圧の実効値, $U:全体^{*2}$ の電圧の実効値
電流(A)	(k):次数kの高調波電流の実効値, :全体の電流の実効値
有効電力(W)	P(k):次数kの高調波の有効電力,P:全体の有効電力
皮相電力(VA)	S(k):次数kの高調波の皮相電力,S:全体の皮相電力
無効電力(var)	Q(k):次数kの高調波の無効電力,Q:全体の無効電力
力率	$\lambda(k)$:次数kの高調波の力率, λ :全体の力率
位相差(°)	φ(k):次数kの高調波電圧と高調波電流の位相差,φ:全体の位相差 φU(k):基本波U(1)に対する各高調波電圧U(k)の位相差 φI(k):基本波I(1)に対する各高調波電流I(k)の位相差
負荷回路の インピーダンス(Ω)	Z(k):次数kの高調波に対する負荷回路のインピーダンス
負荷回路の抵抗と リアクタンス(Ω)	Rs(k):抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の,次数kの高調波 に対する負荷回路の抵抗 Xs(k):抵抗RとインダクタンスLおよびコンデンサCが直列に接続されている場合の,次数kの高調波 に対する負荷回路のリアクタンス Rp(k):RとLおよびCが並列に接続されている場合の,次数kの高調波に対する負荷回路のリアクタン Xp(k):RとLおよびCが並列に接続されている場合の,次数kの高調波に対する負荷回路のリアクタン ス
高調波含有率[%]	Uhdf(k):U(1)またはUに対する高調波電圧U(k)の割合 Ihdf(k):I(1)またはIに対する高調波電流I(k)の割合 Phdf(k):P(1)またはPに対する高調波の有効電力P(k)の割合
全高調波ひずみ[%]	Uthd:U(1)またはUに対する全高調波 ^{*3} 電圧の割合 Ithd:I(1)またはIに対する全高調波電流の割合 Pthd:P(1)またはPに対する全高調波の有効電力の割合
Telephone harmonic factor ^{*4} (適用規格IEC34-	Uthf:電圧のtelephone harmonic factor,Ithf:電流のtelephone harmonic factor 1(1996))
Telephone influence factor ^{*4} (適用規格IEEE St	Utif:電圧のtelephone influence factor,Itif:電流のtelephone influence factor d 100(1996))
Harmonic voltage factor*4 (適用規格IEC34-1(1996))	hvf : harmonic voltage factor
Harmonic current factor ^{*4} (hvfと同様に求めます。)	hcf : harmonic current factor
PLLソースの周波数	fUまたはfl。電圧の周波数(fU)または電流の周波数(fl)のうち,PLLソースに選択されている信号の周 波数を表示します。選択されていない信号の表示は、データなし表示[]になります。

*1 次数kは、0~解析次数上限値までの整数です。0次は直流成分(dc)です。解析次数上限値は、PLLソースの周波数によって最大500次までの範囲で自動的に決まります。

*2 全体(Total)は,基本波(1次)と全高調波成分(2次~解析次数上限値まで)を「付録2」の式に従って求めたものです。また、さらに直流成分(dc)を式に加えることもできます。

*3 全高調波は、全高調波成分(2次~解析次数上限値まで)を「付録2」の式に従って求めたものです。

*4 IECまたはIEEE規格特有の測定ファンクションです。求め方の詳細は、「付録2」をご覧ください。

項目	記号と意味
位相差U1-U2(°)	↓U1-U2:エレメント1の電圧の基本波(U1(1))に対するエレメント2の電圧の基本波(U2(1))の位相差
位相差U1-U3(°)	↓U1-U3:U1(1)に対するエレメント3の電圧の基本波(U3(1))の位相差
 位相差U1-I1(°)	↓U1-I1:U1(1)に対するエレメント1の電流の基本波(I1(1))の位相差
位相差U1-I2(°)	↓U1-I2:U1(1)に対するエレメント2の電流の基本波(I2(1))の位相差
位相差U1-I3(°)	↓U1-I3:U1(1)に対するエレメント3の電流の基本波(I3(1))の位相差

エレメント1~3間の電圧と電流の基本波の位相差を示す測定ファンクション

選択した結線方式(A, B)ごとに求められる測定ファンクション(Σファンクション) (Σファンクションの求め方や演算式は,「付録2」をご覧ください。)

 項目	記号と意味
電圧(V)	$U\Sigma(k)$:次数 k^{*1} の高調波電圧の実効値, $U\Sigma$:全体 *2 の電圧の実効値
電流(A)	I≥(k):次数kの高調波電流の実効値,I≥:全体の電流の実効値
有効電力(W)	P∑(k):次数kの高調波の有効電力,P∑:全体の有効電力
皮相電力(VA)	S∑(k):次数kの高調波の皮相電力, S∑:全体の皮相電力
無効電力(var)	QZ(k):次数kの高調波の無効電力,QZ:全体の無効電力
 力率	$\lambda \Sigma(k)$:次数kの高調波の力率, $\lambda \Sigma$:全体の力率

*1 次数kは、0~解析次数上限値までの整数です。0次は直流成分(dc)です。解析次数上限値は、PLLソースの周波数によって最 大500次までの範囲で自動的に決まります。

*2 全体(Total)は,基本波(1次)と全高調波成分(2次~解析次数上限値まで)を「付録2」の式に従って求めたものです。また、さらに直流成分(dc)を式に加えることもできます。

モータモジュールの測定ファンクション

(測定ファンクションの求め方や演算式は、「15章」をご覧ください。)

モータモジュールを適用できるのは、ファームウエアバージョン2.01以降の製品 (PZ4000)です。

項目	記号と意味
回転速度	Speed:モータの回転速度
トルク	Torque:モータのトルクTrq(k):次数k ^{*1} のモータのトルク,U:全体 ^{*2} のモータのトルク
同期速度	Sync
すべり	Slip
 モータ出力	Pm:モータの機械的出力(メカニカルパワー)
モータ効率 ^{*3}	ηmAまたはηmB:モータが消費する電力に対するモータ出力の比率
トータル効率 ^{*3}	η mAまたは η mB:モータが消費する電力だけでなく,モータに電力を送るときに経由する変換器が 消費する電力も含めた全体の消費電力に対するモータ出力の比率

*1 次数kは、0~解析次数上限値までの整数です。0次は直流成分(dc)です。解析次数上限値は、PLLソースの周波数によって最大500次までの範囲で自動的に決まります。

*2 全体(Total)は,基本波(1次)と全高調波成分(2次~解析次数上限値まで)を「付録2」の式に従って求めたものです。また、さらに直流成分(dc)を式に加えることもできます。

*3 エレメント1, 2, 3への回路結線と本機器で選択する結線方式(A-B)によって、記号 η mAと η mBが、それぞれモータ効率またはトータル効率のどちらかになります。詳細は15.8節をご覧ください。

17.5 機能

測定モードと結線方式

項目	仕様
測定モード	通常測定モードと高調波測定モードから選択可能。
結線方式	1P2W(1単相2線式), 1P3W(単相3線式), 3P3W(三相3線式), 3V3A(3電圧3電流計法), 3P4W(三 相4線式)から, 1つまたは2つずつ選択。

モータ評価

ファームウエアバージョン2.01以降の製品(PZ4000)で、モータモジュールがエレメント 番号4のスロットに装着されているときに適用できます。

	仕様
測定ファンクション	Speed(回転速度), Torque(トルク), Sync(同期速度), Slip(すべり), Pm(モータ出力-メカニカルパ ワー), モータ効率, トータル効率

データの取り込み

 項目	仕様
観測時間	「17.3 時間軸」参照
設定レコード長	アクイジションメモリのレコード長を100kワード, 1Mワード(オプション), および4Mワード(オプ ション)から選択。
レコード長の分割	アクイジションメモリを2つ分けて、それぞれにサンプリングデータを取り込み可能。
 測定レンジ	入力モジュールによって異なります。各入力モジュールの仕様を参照。
スケーリング	外部の電流センサや、PT、CTの出力を本機器に入力するとき、PT比、CT比、および電力係数を 0.0001~999999.9999の範囲で設定。
タイムベース	外部クロック選択可能。外部クロックの仕様は「17.3 時間軸」参照。
ゼロレベル補正/Null	ゼロレベルを補正。

周波数測定

 項目	仕様
	レシプロカル方式
測定対象	通常測定モード 装着されているすべての電力測定モジュールの電圧と電流。 高調波測定モード PLLソースに選択されている電圧または電流の1つだけ。
	99999
	2.5000MHz
確度	±0.1% of reading + 1 digit 観測時間2ms以上, 10Hz≦f≦10kHz(fは周波数),入力レベルが測定レンジの15%以上の正弦波で 観測時間内に5周期以上,測定対象の周波数がサンプルレートの(1/2.5)以下の場合。
周波数測定用フィルタ	ゼロクロスフィルタ
トリガ

 項日		
エッジトリガ		
	トリガモード	オフ,オート,オートレベル,ノーマル,HFオート,およびHFノーマルか ら選択。
	トリガソース	CH1~CH8, Ext(外部トリガ入力)から選択。
	トリガレベル	 ・トリガソースがCH1~CH8のとき 画面の中心から±100%の範囲で設定。設定分解能0.1%。 ・トリガソースがExt(外部トリガ入力)のとき CMOSレベル。外部トリガの仕様は「17.6 外部トリガ入出力部の外部ト リガ入力」参照。 ・トリガモードがHFオートまたはHFノーマルのときのトリガレベルは、測 定レンジの約3.5%です。
	トリガスロープ	ƒ(立ち上がり), ┧(立ち下がり), およびƒ┧(立ち上がり/立ち下がり)から選 択。
 ウインドウトリガ		
	トリガモード	オフ,オート,およびノーマルから選択。
	トリガソース	CH1~CH8から選択。
	ウインドウ	トリガソースのレベルが,設定したウインドウ幅に入るか,またはウインド ウ幅から出るかのどちらでトリガをかけるかを選択。
	ま一両両ち 1000/ とし	0.1000/0 奈田 不記 中 記 中 人 初 些 10/
	衣示画画を100%とし	ノ,ひ~100%の判断に改た。改た77件形1%。
ドリカティレイ	$0.0 \sim 1000000.0 \mu s$	VJ肥田 City上。 ityl上7 胖肥U.3 μS。

数值表示

 項目	仕様
数値データの表示項目	
数値データの最大表示桁数	5桁(表示分解能999999)または6桁(表示分解能999999)から選択。ただし、表示桁数の選択に関わらず、周波数は99999、位相差(位相角)は360.00、カーソル測定は99999、最大値と最小値は99999の表示分解能です。
数値データの表示項目数	通常測定モード 8, 16, 42, 78, およびAllから選択。 高調波測定モード 8, 16, シングルリスト, デュアルリスト, およびΣリストから選択。
表示項目のスクロール	通常測定モード スクロールして,1画面で表示しきれない他の測定ファンクションの数値データを表示。 高調波測定モード スクロールして1画面で表示しきれない他の測定ファンクションの数値データを表示。 シングル/デュアルリストのページスクロール可能。
数値データ表示のリセット	数値データの表示順を初期の表示順にリセット。

波形表示

 項目	仕様
波形表示のON/OFF	CH1~CH8を別々にON/OFF。
波形表示のフォーマット	1, 2, 3, および4分割表示が可能。
波形の表示補間	ドット表示または直線補間表示を選択。
波形の垂直軸方向のズーム	チャネルごとの垂直軸方向の拡大と縮小。0.1~100倍の範囲で設定。
波形の時間軸方向のズーム	ー 時間軸方向の拡大。最大倍率は表示レコード長と観測時間に依存(9.8節参照)。 ズームするところを2カ所まで選択可能。
	グリッドや十字目盛りの表示を選択。
補助表示のON/OFF	 上下限値(スケール値),波形のラベル名のON/OFF。

ベクトル表示/バーグラフ表示

項目	仕様
ベクトル表示	高調波測定モードのときに適用。基本波の位相差をベクトル表示。
バーグラフ表示	高調波測定モードのときに適用。各高調波の大きさをバーグラフ表示。

同時表示

数值演算

項目	仕様
測定/演算区間	測定ファンクションを求めたり,数値演算をするための区間を設定。設定方法をゼロクロス,カーソ ル,外部トリガから選択しそれぞれについて区間設定可能。ただし,高調波測定モードのときはカー ソルでの設定だけ可能。外部トリガ入力の仕様は「17.6 外部トリガ入出力部」参照。
デルタ演算	通常測定モードのときだけ適用。瞬時値の差演算の結果から,測定回路の別の数値データを演算。
ユーザー定義 ファンクション	測定ファンクションの記号と演算子を組み合わせた演算式(4つまで)の数値データを演算。
皮相電力の演算式	通常測定モードのときだけ適用。皮相電力をUrms×Irms,Umn×Imn,およびUdc×Idcから選択。
アベレージング	指数化平均。減衰定数を2,4,8,16,32,および64から選択。
位相差表示	位相差の表示方式を,進みと遅れで表示するか360°表示にするかを選択。
ひずみ率の演算式	演算式の分母を,波形全体にするか基本波にするかを選択。
Corrected Power	適用規格IEC76-1(1976), IEEE C57.12.90-1993, IEC76-1(1993)で定められた有効電力の補正。
数値演算の再実行	測定/演算区間を設定し直して,測定ファンクションや演算式の演算を再実行可能(アベレージングを 除く)。

波形解析

 項目	仕様			
波形演算範囲	波形演算をするための範囲をカーソルで設定。最大100kワードまで設定可能。			
波形演算	波形の記号と演算子を組み合わせた演算式(2つまで)の波形を演算。			
 表示スケーリング	演算した波形の上下限値を設定して表示。自動設定可能。			
FFT演算	高速フーリエ変換によりパワースペクトラムを求め表示。演算点数を1000,2000,および10000点から選択。			
カーソル測定 マーカー,水平カーソル,垂直カーソルを波形にあてて,その点の値を測定。 1サンプリングデータの確度は,±2% of range(設計値)で,サンプリング分解能とアナ! 誤差を含まない。				
波形/FFT演算の再実行	演算範囲を設定し直して,波形演算やFFT演算を再実行可能。			

高調波測定

項目	仕様				
方式	PLL同期方式。				
周波数範囲	基本波周波数が20H	基本波周波数が20Hz~6.4kHzの範囲。			
測定ファンクション	「17.4 測定ファン				
設定レコード長	通常測定モードと同	通常測定モードと同じ。			
FFTデータ点数	8192。アクイジショ	8192。アクイジションメモリ内の解析開始点を任意に設定。			
FFT処理語長	32bit				
窓関数	レクタンギュラ	レクタンギュラ			
PLLソースフィルタ	選択。PLLソースとして使用するときの外部クロックの周波数範囲は、20Hz~6.4kHz。そのほか 仕様は「17.3 時間軸」参照。 PLLを使用しない直接外部クロック動作も可能。 外部クロック周波数の1/4096が基本周波数。 ゼロクロスフィルタ				
サンプルレート/窓幅/角	解析次数の関係(ヒステリ	シスあり)			
	PLLソースの 基本周波数 ^{⁵1} f [Hz]	サンプル レート [S/s]	窓幅 (基本波の 周期数)	解析次数 上限值	通常測定モードの確度と 同じ最大次数 ^{*2}
	20 - 40	f x /1096	2	500	
	20 10	174000	2	500	50
	40 - 80	f×2048	4	500	50 50
	40 - 80 80 - 160	f×2048 f×1024	2 4 8	500 500 500	50 50 50
	40 - 80 80 - 160 160 -320	f×2048 f×1024 f×512	2 4 8 16	500 500 500 200	50 50 50 25
	40 - 80 80 - 160 160 -320 320 - 640	f×2048 f×1024 f×512 f×256	4 8 16 32	500 500 500 200 100	50 50 50 25 25
	40 - 80 80 - 160 160 -320 320 - 640 640 - 1280	f×2048 f×1024 f×512 f×256 f×128	4 8 16 32 64	500 500 200 100 50	50 50 50 25 25 10
	40 - 80 80 - 160 160 -320 320 - 640 640 - 1280 1280 - 2560	f×2048 f×1024 f×512 f×256 f×128 f×64	2 4 8 16 32 64 128	500 500 200 100 50 30	50 50 25 25 10 10

確度^{*2} 通常測定モードの確度が適用されない帯域の確度は、0.001×f×(次数)% of readingを加算(設計値, fは対象次数の周波数(kHz))。

*1 PLLソースの基本周波数の項目にはヒステリシスをもたせています。

*2 PLLソースをCH1~CH8のどれかにしたとき。通常測定モードの確度については、各入力モジュールの仕様をご覧ください。

データの保存と読み込み

フロッピーディスクや外部のSCSIデバイス [*] に,設定情報,波形データ,および数値データを保存。
フロッピーディスクや外部のSCSIデバイス [*] から,保存した設定情報または波形データを読み込む。

* SCSIインタフェースはオプションです。

画面イメージデータの出力

* 内蔵プリンタ,SCSIインタフェースはオプションです。

17.6 外部トリガ入出力部

項目	仕様
外部トリガ入力 (EXT TRIG IN)	コネクタ形式:BNCコネクタ 入力レベル:CMOS 最小パルス幅:1μs 論理:ƒ(立ち上がりエッジ), ≹(立ち下がりエッジ),ƒ≹(立ち上がり/立ち下がりエッジ) トリガ遅延時間:(2μs+1サンプル周期)以内
外部トリガ出力 (EXT TRIG OUT)	コネクタ形式:BNCコネクタ 出力レベル:CMOS 出力論理形式:∐負論理 出力遅延時間:(1μs+1サンプル周期)以内 出力保持時間:Lowレベル 200ns以上
外部クロック入力の仕様	〔 については, 「17.3 時間軸」をご覧ください。

17.7 内蔵フロッピーディスクドライブ

 項目	仕様
ドライブ数	1
サイズ	3.5型
容量	640KB/720KB/1.2MB/1.44MB

17.8 GP-IBインタフェース

項目	仕様	
電気的·機械的仕様	IEEE St'd 488-1978 (JIS C 1901-1987)に準拠。	
機能的仕様	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT0, C0	
プロトコル	IEEE St'd 488.2-1987に準拠	
使用コード	$ SO(ASCII) \supset -F^*$	
モード	アドレッサブルモード	
アドレス	0~30	
リモート状態解除	LOCALキーによりリモート状態の解除可能(Local Lockout時を除く)	
GP-IBインタフェースの仕様の詳細は,別冊の通信インタフェースユーザーズマニュアル(IM253710-11)をご覧ください。		

17.9 シリアル(RS-232)インタフェース

項目	仕様		
コネクタ形式	D-Sub9ピン プラグ		
電気的仕様	EIA-574規格に準拠(EIA-232(RS-232)規格の9ピン用)		
接続形式	ポイント対ポイント		
通信方式	全2重		
同期方式	調歩同期式		
ボーレート	次の中から選択可能 1200, 2400, 4800, 9600, 19200 bps		

シリアルインタフェースの仕様の詳細は、別冊の通信インタフェースユーザーズマニュアル(IM253710-11)をご覧ください。

17.10 セントロニクスインタフェース

項目	仕様
コネクタ形式	D-Sub25ピン レセプタクル
電気的仕様	セントロニクス準拠
対応プリンタ	ESC/P, ESC/Pラスタコマンド対応の機種, BJC-80V, PCL5, LIPS3, PC-PR201

17.11 SCSIインタフェース(オプション)

項目		
規格 SCSI(Small Computer System Interface) ANSI X3.131-1986		
 コネクタ形式	ハーフピッチ50ピン(ピンタイプ)	
コネクタピンアサイン	不平衡型(シングルエンド),ターミネータ内蔵	
使用可能なSCSIデバイス [*]	HDドライブ:NEC MS-DOS ver3.3以降,またはEZ-SCSIでフォーマット可能なSCSI HDドライブ MOドライブ:128/230/640MBドライブ,MOメディアはセミIBMフォーマットを使用 ZIPドライブ PDドライブ	

* 使用可能なSCSIデバイスについて詳しい情報を記載したリーフレットBL7001-61「推奨SCSI機器リスト」を準備していま す。当社までお問い合わせください。

17.12内蔵プリンタ(オプション)

項目		
印字方式		
ドット密度	8ドット/mm	
用紙幅	112mm	
有効記録幅	104mm	

17.13一般仕様

	仕様
基準動作状態	周囲温度:23±3℃ 周囲湿度:50±10%RH 電源電圧/周波数の誤差:定格の5%以内 ウォームアップ時間(30分以上)経過後にゼロレベル補正実行後。
動作環境	温度:5~40℃ 湿度:プリンタ未使用時20~85%RH,プリンタ使用時35~80%RH
使用高度	2000m以下
保存環境	温度:−25~60℃ 湿度:20~80%RH(結露しないこと)
定格電源電圧	100~120VAC, 200~240VAC
電源電圧変動許容範囲	90~132VAC, 180~264VAC
定格電源周波数	50/60Hz
電源周波数変動許容範囲	48~63Hz
最大消費電力	200VA(プリンタ使用時)
絶縁抵抗	電源プラグ-ケース間:500VDC,50MΩ以上
耐電圧	電源プラグ-ケース間:1500VAC(50/60Hz),1分間
外形寸法 (詳細は17-14ページ)	約426mm(W)×177mm(H)×450mm(D) (プリンタカバー収納時,取っ手および突起部を除く。)
質量	本体のみ(253710):約10kg 本体十電力測定モジュール(253752)4つ装着時:約15kg
機器の冷却方法	強制空冷
設置姿勢	水平(ただし、スタンド使用可能)。垂直または重ね置き禁止。
バッテリバックアップ	設定情報と内蔵時計をリチウム電池でバックアップ
 使用ヒューズ	

使用ヒューズ

使用場所	最大定格電圧	最大定格電流	タイプ	規格
電源	250V	6.3A	タイムラグ	UL/VDE認定
SCSIボート ^{**}	250V	800mA	タイムラグ	VDE/SEMKO認定

* 本体ケース内にあるので、お客様では交換できません。万一、本体ケース内のヒューズが切れ ていると思われるときは、お買い求め先までご連絡ください。

項目			
付属品	 ・電源コード:1本 ・ 3極-2極変換アダプタ:1個(電源コード仕様が-Mのときだけ。日本国内でのみ使用可) ・電源用予備ヒューズ:1個(本体ヒューズホルダに装着) ・カバープレート:4枚(モジュールが装着されていないスロットには、下記のねじを使用してカバー プレートを装着)。 ・ 電流入力保護カバー:1個 ・ねじ:20個(M3,ねじ長さ:5mm,カバープレートと電流入力保護カバー取り付け用ねじ)。 ・ プリンタ用ロール紙:1巻(仕様コード/B5だけに付属) ・ 底面脚用ゴム:2組 ・ ユーザーズマニュアル:1冊,本書 ・ 通信インタフェースユーザーズマニュアル:1冊 		
安全規格* ¹	適合規格 EN61010-1(253710, 253751, 253752, 253771に適用) 過電圧カテゴリ(設置カテゴリ) CAT II* ² 測定カテゴリCAT II* ⁵ 汚染度2* ³		
エミッション*1	適合規格 ・ EN61326-1 Class A(253710, 253751, 253752, 253771に適用) ・ EN55011 Class A, Group1(253710, 253751, 253752, 253771に適用) 本製品はクラスA(工業環境用)の製品です。家庭環境においては、無線妨害を生ず ることがあり、その場合には使用者が適切な対策を講ずることが必要となることが あります。 ・ EN61000-3-2(253710, 253751, 253752, 253771に適用) ・ EN61000-3-3(253710, 253751, 253752, 253771に適用) ・ EN61000-3-2(253710, 253751, 253752, 253771に適用) ・ EN61000-3-2(253710, 253751, 253752, 253771に適用) ・ Ctick EN55011 Class A, Group1(253710, 253751, 253752, 253771に適用) ・ Ctick EN55011 Class A, Group1(253710, 253751, 253752, 253771に適用) ・ Ctick EN55011 Class A, Group1(253710, 253751, 253752, 253771に適用) ・ Ctick EN55011 Class A, Group1(253710, 253751, 253752, 253771に適用) ・ Ctick EN55011 Class A, Group1(2537710, 253751, 253752, 253771に適用) ・ アブル及びニュートラルのケーブルを束ねて、それらの束ねた各相ごとの ケーブル及びニュートラルのケーブルを取り ・ アントロズ ・ スロード側のケーブルです。 ・ タントリガン力端子 ・ スロック ・ スロック ・ メ船を、 ・ スロック ・ メーカーブルシック ・ スロック ・ スロック ・ トリガン力端子 <		
イミュニティ*1	適合規格 EN61326-1 Table2(工業立地用) (253710, 253751, 253752, 253771に適用) ケーブル条件 上記のエミッションのケーブル条件と同じです。		

*1 CEマークが付いている製品に適用します。それ以外の製品については、お買い求め先にお問い合わせください。

*2 過電圧カテゴリは、過渡的な過電圧を定義する数値であり、インパルス耐電圧の規定を含んでいます。CAT Iは、過電圧制御 が用いられている回路から給電される電気機器に適用されます。CAT IIは、配電盤などの固定設備から給電される電気機器 に適用されます。

*3 汚染度とは、耐電圧または表面抵抗率を低下させる固体、液体、気体の付着の程度に関するものです。汚染度1は、密閉された空間(汚染が無いか,乾燥した非導電性汚染のみ)に適用されます。汚染度2は、通常の室内雰囲気(非導電性汚染のみ)に適用されます。

*4 ケーブルの長さは、3m以下でご使用ください。

*5 測定カテゴリII(CAT II)は、配電盤などから配線された壁コンセントなどの固定設備を通じて給電される電気機器および配線 上の測定に適用されます。

指示なき寸法公差は,土3%(ただし10mm未満は土0.3mm)とする。

項目	仕様	
入力チャネル数	2	
	電圧:1	
	電流・(直接入力5A喃子まには電流センサ人力コネクタから速状)	
絶縁抵抗	電圧入力端子一括-ケース間:500VDC,50MΩ以上	
	電流入力端子一括-ケー	-ス間:500VDC,50MΩ以上
	電圧人力峏子一括-電波	1人刀哧子—拈訚:500VDC,50MΩ以上
耐電圧	電圧入力端子一括-ケー	-ス間:2200VAC(50/60Hz),1分間
	電流人刀喃子一括-ケー	- 人間:22UUVAC(50/60HZ), 1分間 5.1 古地区、1781:2000/40/50/0011)、4小8
	電圧人力峏子一括-電流	1人刀师子一括向:3700VAC(50/60HZ),1分向
質量	約0.9kg	
電圧入力		
	入力端子形状	プラグイン端子
	入力形式	フローティング入力,抵抗分圧方式
		入力抵抗:約1MΩ,入力容量:約5pF
	測定レンジ	Auto, 2000Vpk, 1200Vpk, 600Vpk, 300Vpk, 200Vpk, 120Vpk, 60Vpk, 30Vpkから選択。
	周波数範囲	DC~2MHz
	瞬時最大許容入力 (1s)	2000Vpkまたは1000Vrmsのどちらか低い方(CAT II)
	連続最大許容入力	瞬時最大許容入力と同じ。
	連続最大同相電圧	600Vrms(50/60Hz)(CAT II)
	CMRR (同相電圧の影響)	入力端子間を短絡,入力端子-ケース間に600Vrms(50/60Hz)を印加。 10Hz≤f≤1kHzのとき,0.005% of range以下。 その他の場合,(最大レンジ/測定レンジ)×0.0002×f% of range以下(設計 値)。fは周波数(kHz)。
	ラインフィルタ	OFF, 500Hz, 20kHz, 1MHzから選択。
	ゼロクロスフィルタ	? OFF, 500Hz, 20kHzから選択。
	A/D変換器	12ビット
	サンプルレート	最高5MS/s

項目	仕様		
電流入力			
	入力端子形状	直接入力:大形バー 電流センサ入力:B	インディングポスト SNCコネクタ
	入力形式	フローティング入力	」,シャント入力方式
	計器損失	直接入力5A	入力抵抗:約100mΩ 入力リアクタンス:約0.07μH
		電流センサ入力	入力抵抗:約10kΩ
	測定レンジ	直接入力5A	Auto, 10Apk, 4Apk, 2Apk, 1Apk, 0.4Apk, 0.2Apk, 0.1Apkから選択。
		電流センサ入力	Auto, 1000mVpk, 400mVpk, 200mVpk, 100mVpkから選択。
	周波数範囲	DC~2MHz	
	瞬時最大許容入力 (1s)	直接入力5A 電流センサ入力	30Apkまたは15Armsのどちらか低い方 2Vrms
	連続最大許容入力	直接入力5A 電流センサ入力	10Apkまたは7Armsのどちらか低い方 2Vrms
	連続最大同相電圧	600Vrms(50/60Hz	Z)
		入力端子間を開放, fは周波数(kHz)。	入力端子-ケース間に600Vrms(50/60Hz)を印加,
		10Hz≦f≦1kHzの その他の場合,(最 値)。fは周波数(kHz	とき,0.005% of range以下。 大レンジ/測定レンジ)×0.0002×f % of range以下(設計 z)。
	ラインフィルタ	OFF, 500Hz, 204	
	ゼロクロスフィルタ	▽OFF, 500Hz, 204	<hzから選択。< td=""></hzから選択。<>
	A/D変換器	12ビット	
	サンプルレート	最高5MS/s	

項目	仕様			
電圧と電流の確度	条件			
	 校正後3ヶ月以内 共満年 (51)(約) 			
	· 人力信号、止弦波 日相電圧、0/			
	・ 内化电圧・UV 、 毎測時間内に) 1 1 信号が	5月期トリトズ サンプリングデータが10レロードトリト		
	- 観烈时间PNC, 八月后与か - DCの確度は NHII 継能が	S回来以上し、 サンフランシナータル TOK ノート以上。 MNでラインフィルタがMN		
	・ fは周波数。			
	DC	+(0.2% of reading + 0.1% of range)		
	0.1 Hz $\leq f < 10$ Hz	\pm (0.2% of reading + 0.1% of range)		
	10 Hz \leq f $<$ 45Hz	$\pm (0.2\% \text{ of reading} \pm 0.05\% \text{ of range})$		
	$\frac{10000}{45Hz} \le f \le 1kHz$	$\pm (0.1\% \text{ of reading} + 0.05\% \text{ of range})$		
	$\frac{16112}{1 \text{ kHz}} \leq f \leq 10 \text{ kHz}$	\pm (0.1% of reading + 0.05% of range)		
	$\frac{10 \text{ kHz}}{10 \text{ kHz}} < f \le 50 \text{ kHz}$	$\pm (0.2\% \text{ of reading} + 0.1\% \text{ of range})$		
	$\frac{100kHz}{50kHz} < f \le 100kHz$	$\pm (0.6\% \text{ of reading} \pm 0.2\% \text{ of range})$		
	$\frac{300012}{100000000000000000000000000000000$	$\pm (0.6\% \text{ of reading} \pm 0.2\% \text{ of range})$		
	1000000000000000000000000000000000000	\pm (1% of reading + 0.2% of range)		
	$\frac{200\text{KHZ}}{400\text{KHZ}} \leq f \leq 500\text{KHZ}$	\pm (17% of reading + 0.2% of range)		
	$\frac{400 \text{KHZ} < 1 \ge 500 \text{KHZ}}{500 \text{KHZ}}$	$\pm ((0.1 \pm 0.006 \times 1)\% \text{ of reading} \pm 20\% \text{ of range})$		
	$\frac{500 \text{KHZ} < 1 \ge 100 \text{HZ}}{1000 \text{KHZ}}$	$\pm ((0.1 \pm 0.006 \times 1)\% \text{ of reading} \pm 2\% \text{ of range})$		
		\pm ((0.1 + 0.000 × 1)% of reduing + 2% of range)		
	 入力信号の大きさと周波数。 400Vrms以上の入力電圧ので100kHz以上の入力電圧(kV), ラインフィルタの影響 ラインフィルタのNのとき, of readingを加算。 測定レンジの影響 入力信号が正弦波で,そ 入力信号がDCで、測定 	の影響 2場合,読み値誤差×1.5×U ² % of readingを加算。400Vrms以」 D場合,さらに設計値0.005×f×U ² % of readingを加算。 f:周波数(kHz)とする。 カットオフ周波数の10分の1の周波数の入力信号に対して,0.59 たの実効値が測定レンジの5~55%のとき,上表のとおり。 レンジの−55~55%のとき、上表のとおり。		
	 入力信号が正弦波で、そ 入力信号がDCで、測定L 2倍。 温度係数 5~20℃または26~40℃の 	たの実効値が測定レンジの55~70%のとき,読み値誤差が2倍。 ノンジの−100~−55%,または55~100%のとき,読み値誤差が)範囲で,0.01% of reading/℃を加算。ただし,入力信号が10kH		

項目	仕様	
電力の確度	 条件 校正後3ヶ月以内 基準動作状態 力率:1 入力信号:正弦波 同相電圧:0V 観測時間内に、入力信号が DCの確度は、NULL機能が fは周波数。 	5周期以上で,サンプリングデータが10kワード以上。 ONでラインフィルタがON。
	周波数	
		上(記が喧読左 + 別定レンク読左) +(0.2% of reading + 0.1% of range)
	$\frac{100}{0.1 \text{Hz} \le f < 10 \text{Hz}}$	$\pm (0.2\% \text{ of reading} + 0.05\% \text{ of range})$
	$\frac{10}{10}$	+(0.2% of reading + 0.025% of range)
	45 Hz $\leq f \leq 1$ kHz	\pm (0.1% of reading + 0.025% of range)
	1 kHz < f \leq 10kHz	\pm (0.1% of reading + 0.04% of range)
	10 kHz $<$ f \leq 50kHz	\pm (0.2% of reading + 0.05% of range)
	50 kHz $<$ f \leq 100kHz	\pm (0.6% of reading + 0.1% of range)
	100 kHz $< f \leq 200$ kHz	\pm (1.5% of reading + 0.15% of range)
	200 kHz $< f \leq 400$ kHz	\pm (1.5% of reading + 0.15% of range)
	400 kHz $< f \leq 500$ kHz	\pm ((0.1 + 0.009 × f [*])% of reading + 0.15% of range)
	500 kHz < f ≤ 1 MHz	\pm ((0.1 + 0.009 × f [*])% of reading + 1.5% of range)
		* 読み値誤差式中のfの単位は(kHz)。
	 1年確度 ±((読み値誤差)+(測定レン カ率cosφ(λ)の影響 cosφ=0のとき 45~66Hz:皮相電: 0.0015以上)を加算。 0<cosφ<1のとき< li=""> 45~66Hz:(0.15× </cosφ<1のとき<>	ハジ誤差)×1.5), 校正周期は1年。 わの読み値×0.0015の値を加算。 力の読み値×0.0002×fの値(設計値, ただし, 皮相電力の読み値× , fは周波数(kHz)。 tan φ)% of readingを加算。

- 他の周波数:(0.02×f×tanφ)% of reading(設計値,ただし,(0.15×tanφ)% of reading以上)を加算。fは周波数(kHz)。
- 入力信号の大きさと周波数の影響
 400Vrms以上の入力電圧の場合,読み値誤差×1.5×U²% of readingを加算。400Vrms以上で100kHz以上の入力電圧の場合,さらに設計値0.005×f×U²% of readingを加算。
- ただし,U:入力電圧(kV),f:周波数(kHz)とする。
- ・ ラインフィルタの影響

ラインフィルタONのとき、カットオフ周波数の10分の1の周波数の入力信号に対して、1% of readingを加算。

- ・ 測定レンジの影響
 - ・入力信号が正弦波で、その実効値が測定レンジの5~55%のとき、上表のとおり。
 - · 入力信号がDCで、測定レンジの-55~55%のとき、上表のとおり。
 - ・ 入力信号が正弦波で、その実効値が測定レンジの55~70%のとき、読み値誤差が2倍。
 - · 入力信号がDCで、測定レンジの-100~-55%、または55~100%のとき、読み値誤差が
 - 2倍。
- ・ 温度係数

5~20℃または26~40℃の範囲で, 0.01% of reading/℃を加算。ただし, 入力信号が10kHz 以下のとき。

(電力の確度,次ページに続く)

項目	仕様		
(電力の確度)	のつづき)		
	・その		
	· 同 . 、、	可ページの表の10HZ以下は,設計値。 ♪ カ信号が5周期共満で、サンプリングデータが10kロード共満の場合、設計値/詰み/	はしま
	σ	の10分の1)×(5/周期数)×(10k/サンプリングデータのワード数)% of readingを加	叵缺左 算。
外形図			
		単位:m	nm
	73	<u>← 66 242</u>	-
			л©,
	₽₽₽ ₽		=
			╕╟
			∍
	YONDQAWA >		, 0

項目	仕様	
入力チャネル数	2	
	電圧:1	
	電流:1(直接入力5A端	子,直接入力20A端子,および電流センサ入力コネクタから選択)
絶縁抵抗	電圧入力端子一括-ケース間:500VDC,50MΩ以上	
	電流入力端子一括-ケー	-ス間:500VDC,50MΩ以上
	電圧入力端子一括-電流	私力端子一括間:500VDC,50MΩ以上
耐電圧	電圧入力端子一括-ケー	-ス間:2200VAC(50/60Hz),1分間
	電流入力端子一括-ケー	-ス間:2200VAC(50/60Hz),1分間
	電圧入力端子一括-電流	私力端子一括間:3700VAC(50/60Hz),1分間
質量	約1.1kg	
電圧入力		
	入力端子形状	プラグイン端子
	入力形式	フローティング入力,抵抗分圧方式
	計器損失	入力抵抗:約1MΩ,入力容量:約5pF
	測定レンジ	Auto, 2000Vpk, 1200Vpk, 600Vpk, 300Vpk, 200Vpk, 120Vpk, 60Vpk, 30Vpkから選択。
	周波数範囲	DC~2MHz
	瞬時最大許容入力 (1s)	2000Vpkまたは1000Vrmsのどちらか低い方(CAT II)
	連続最大許容入力	瞬時最大許容入力と同じ。
	連続最大同相電圧	600Vrms(50/60Hz)(CAT II)
	CMRR (同相電圧の影響)	入力端子間を短絡,入力端子-ケース間に600Vrms(50/60Hz)を印加。 10Hz≤f≤1kHzのとき,0.005% of range以下。 その他の場合,(最大レンジ/測定レンジ)×0.0002×f% of range以下(設計 値)。fは周波数(kHz)。
	ラインフィルタ	OFF, 500Hz, 20kHz, 1MHzから選択。
	ゼロクロスフィルタ	? OFF, 500Hz, 20kHzから選択。
	A/D変換器	12ビット
	サンプルレート	最高5MS/s

項目	仕様		
	入力端子形状	直接入力:大形パイン 電流センサ入力:BNG	/ディングポスト Cコネクタ
	入力形式	フローティング入力,	シャント入力方式
	計器損失	直接入力5A	入力抵抗:約100mΩ 入力リアクタンス:約0.07μH
		直接入力20A	入力抵抗:約11mΩ 入力リアクタンス:約0.02μH
		電流センサ入力	入力抵抗:約10kΩ
	測定レンジ	直接入力5A	Auto, 10Apk, 4Apk, 2Apk, 1Apk, 0.4Apk, 0.2Apk, 0.1Apkから選択。
		直接入力20A	Auto, 100Apk, 40Apk, 20Apk, 10Apk, 4Apk, 2Apk, 1Apkから選択。
		電流センサ入力	Auto, 1000mVpk, 400mVpk, 200mVpk, 100mVpkから選択。
	周波数範囲	DC~2MHz	
	一瞬時最大許容入力 (1s)	直接入力5A 直接入力20A 電流センサ入力	30Apkまたは15Armsのどちらか低い方 150Apkまたは40Armsのどちらか低い方 2Vrms
	連続最大許容入力	直接入力5A 直接入力20A 電流センサ入力	10Apkまたは7Armsのどちらか低い方 100Apkまたは30Armsのどちらか低い方 2Vrms
	連続最大同相電圧	600Vrms(50/60Hz)	
	CMRR (同相電圧の影響)	入力端子間を開放,入 fは周波数(kHz)。 10Hz≦f≦1kHzのとま その他の場合,(最大L 値)。fは周波数(kHz)。	、力端子-ケース間に600Vrms(50/60Hz)を印加, き,0.005% of range以下。 ノンジ/測定レンジ)×0.0002×f % of range以下(設計
	ラインフィルタ	OFF, 500Hz, 20kH	z, 1MHzから選択。
	ゼロクロスフィルタ	7 OFF, 500Hz, 20kH	
		12ビット	
	サンプルレート	最高5MS/s	

項目	仕様	
電圧と電流の確度	条件	
	 校正後3ヶ月以内 	
	· 人刀信号:止弦波 	
	・ 内化電圧・UV ・ 毎測時間内に) 九信号が	5月期トリトで、サンプリングデータが10とワードトリト
	- DCの確度は NIIII 機能が	のAM以上し、サンクランクテーダのTOKクード以上。 ONIでラインフィルタがONL
	· fは周波数。	
		確度
		土(読み値誤差 + 測定レンジ誤差)
	DC	$\pm(0.2\%$ of reading + 0.1% of range)
	$0.1Hz \le f < 10Hz$	$\pm(0.2\%$ of reading + 0.1% of range)
	$10Hz \le f < 45Hz$	$\pm(0.2\%$ of reading + 0.05% of range)
	$45Hz \le f \le 1kHz$	\pm (0.1% of reading + 0.05% of range)
	$1 \text{kHz} < f \leq 10 \text{kHz}$	\pm (0.1% of reading + 0.05% of range)
	10 kHz $< f \leq 50$ kHz	$\pm(0.2\%$ of reading + 0.1% of range)
	50 kHz $<$ f \leq 100kHz	\pm (0.6% of reading + 0.2% of range)
	100 kHz $< f \leq 200$ kHz	\pm (0.6% of reading + 0.2% of range)
	200 kHz $< f \leq 400$ kHz	\pm (1% of reading + 0.2% of range)
	400 kHz $< f \leq 500$ kHz	\pm ((0.1 + 0.006 × f [*])% of reading + 0.2% of range)
	500kHz < f ≦ 1MHz	$\pm((0.1 + 0.006 \times f^*)\% \text{ of reading} + 2\% \text{ of range})$
	1 MHz $<$ f \leq 5MHz	$\pm((0.1 + 0.006 \times f^*)\% \text{ of reading} + 2\% \text{ of range})$
		* 読み値誤差式中のfの単位は(kHz)。
	±((読み値誤差)+(測定レン • 入力信号の大きさと周波数 · 400Vrms以上の入力電圧 上で100kHz以上の入力 · 10Arms以上の入力電流	/ジ誤差)×1.5),校正周期は1年。 の影響 Eの場合,読み値誤差×1.5×U ² % of readingを加算。400∨rms比 電圧の場合,さらに設計値0.005×f×U ² % of readingを加算。 の場合,0.0002×I ² % of readingを加算。
	ただし, U:入力電圧(kV),	: 入力電流(A), f : 周波数(kHz)とする。
	フィンノイルタUNのとさ, of readingを加管	リットAノ向波致のIU分のIの向波数の人力信号に対し(, U.5)
	 ・ 測定レンジの影響 	
	 ・ 入力信号が正弦波で、 そ 	の実効値が測定レンジの5~55%のとき、上表のとおり。
	 入力信号がDCで,測定 	レンジの-55~55%のとき、上表のとおり。
	 入力信号が正弦波で、そ 入力信号がDCで、測定L 2倍。 	その実効値が測定レンジの55~70%のとき,読み値誤差が2倍。 ノンジのー100~-55%,または55~100%のとき,読み値誤差が
	• 温度係数	
	5~20℃または26~40℃の	範囲で,0.01% of reading/℃を加算。ただし,入力信号が10kH
	以下のとき。	
	・ その他	
	・上表の10Hz以下と1MH 用)。	iz以上は設計値(1MHz以上は電圧入力と電流センサ入力だけに)
	 人力信号が5周期未満で、 の10分の1)×(5/周期数 カーソル測定の確度は 	サンフリングデータが10kワード未満の場合,設計値(読み値誤))×(10k/サンプリングデータのワード数)% of readingを加算。 「125 機能」の波形解析のカーンル測定を参照

項目	仕様	
電力の確度	条件	
	・ 校正後3ヶ月以内	
	・基準動作状態	
	· 力率:1	
	• 入力信号:正弦波	
	· 同相電圧:0V	
	 ・ 観測時間内に、人力信号が5 	5周期以上で, サンブリングデータが10kワード以上。
	· DCの催度は、NULL機能が	UN でラインフィルタかUN。
	・ Tは周波数。 	
	周波数	確度
		土(読み値誤差 + 測定レンジ誤差)
	DC	\pm (0.2% of reading + 0.1% of range)
	$0.1 \text{Hz} \leq f < 10 \text{Hz}$	$\pm(0.2\% \text{ of reading} + 0.05\% \text{ of range})$
	$10Hz \le f < 45Hz$	$\pm(0.2\%$ of reading + 0.025% of range)
	$45Hz \leq f \leq 1kHz$	$\pm(0.1\%$ of reading + 0.025% of range)
	$1 \text{kHz} < \text{f} \leq 10 \text{kHz}$	$\pm(0.1\%$ of reading + 0.04% of range)
	10 kHz $< f \leq 50$ kHz	\pm (0.2% of reading + 0.05% of range)
	50 kHz $<$ f \leq 100kHz	\pm (0.6% of reading + 0.1% of range)
	$100 \text{kHz} < f \leq 200 \text{kHz}$	\pm (1.5% of reading + 0.15% of range)
	200 kHz $<$ f \leq 400kHz	\pm (1.5% of reading + 0.15% of range)
	400 kHz $< f \leq 500$ kHz	\pm ((0.1 + 0.009 × f [*])% of reading + 0.15% of range)
	500 kHz $<$ f \leq 1MHz	\pm ((0.1 + 0.009 × f [*])% of reading + 1.5% of range)

* 読み値誤差式中のfの単位は(kHz)。

1年確度

- ±((読み値誤差)+(測定レンジ誤差)×1.5),校正周期は1年。
- カ率cosφ(λ)の影響
 - · cos¢=0のとき
 - · 45~66Hz:皮相電力の読み値×0.0015の値を加算。
 - ・他の周波数:皮相電力の読み値×0.0002×fの値(設計値,ただし,皮相電力の読み値×
 0.0015以上)を加算。fは周波数(kHz)。
 - ・0<cos \$<1のとき

 - 他の周波数:(0.02×f×tan φ)% of reading(設計値,ただし,(0.15×tan φ)% of reading以上)を加算。fは周波数(kHz)。

・ 入力信号の大きさと周波数の影響

- 400Vrms以上の入力電圧の場合,読み値誤差×1.5×U²% of readingを加算。400Vrms以上で100kHz以上の入力電圧の場合,さらに設計値0.005×f×U²% of readingを加算。
 10Arms以上の入力電流の場合,0.0002×I²% of readingを加算。
- ただし、U:入力電圧(kV), I:入力電流(A), f:周波数(kHz)とする。
- ・ ラインフィルタの影響

ラインフィルタONのとき、カットオフ周波数の10分の1の周波数の入力信号に対して、1% of readingを加算。

- ・ 測定レンジの影響
 - ・入力信号が正弦波で、その実効値が測定レンジの5~55%のとき、上表のとおり。
 - · 入力信号がDCで、測定レンジの-55~55%のとき、上表のとおり。
 - ・入力信号が正弦波で、その実効値が測定レンジの55~70%のとき、読み値誤差が2倍。
 - 入力信号がDCで、測定レンジの-100~-55%、または55~100%のとき、読み値誤差が
 2倍。
- ・ 温度係数

5~20℃または26~40℃の範囲で, 0.01% of reading/℃を加算。ただし, 入力信号が10kHz 以下のとき。

(電力の確度,次ページに続く)

 項目	仕様		
(電力の確度のつづき)			
	•	その他	
		・前ページの表の10Hz以下は、設計値。	
		 人力信号から向期木満で、サンノリンクテーダか10Kリート木満の場合、きの10分の1)と(5/用期数)と(10k/サンゴリングデータのロード数)2/ of r 	設計値(読み値誤差 aadiaaま加答
		の10月0月17~(5/周知致)~(10k/ シンクランシケータのラー1-数)/2011	edulilyで加昇。
		-	
		4	
		4	
		4	
F		h	
	n n Toh		
			単位:mm
	73	66 242	
-			•
a *	, ,		
	_∎Ÿ		
	8888		
	~		ee h
	\cap		
10	NDGAWA		

17.17 モータモジュール(253771)

 項目	仕様
コネクタ形式	BNCコネクタ
入力形式	フローティング入力,抵抗分圧方式
計器損失	入力抵抗:約1MΩ,入力容量:約17pF
絶縁抵抗	入力端子-ケース間:500VDC, 10MΩ以上
耐電圧	入力端子-ケース間:3700VAC(50/60Hz),1分間
質量	約1.1kg
直流電圧(アナログ入力)	
	入力チャネル数 2 回転センサ信号入力:1(CH7) トルクメータ信号入力:1(CH8)
	測定レンジ Auto, 50Vpk, 20Vpk, 10Vpk, 5Vpk, 2Vpk, 1Vpkから選択。
	 有効入力範囲 測定レンジの±100%
	CMRR 入力端子間を短絡,入力端子-ケース間に600Vrms(50/60Hz)を印加。 (同相電圧の影響) 10Hz≤f≤1kHzのとき,0.005% of range以下。 その他の場合,(0.025/測定レンジ)×f% of range以下(設計値)。fは周波(kHz)。
	ラインフィルタ OFF, 100Hz, 500Hzから選択。
	ゼロクロスフィルタ OFF,100Hz,500Hzから選択。
	A/D変換器 12ビット
	サンプルレート 最高5MS/s
	波形観測周波数帯域 DC~500kHz(-3dB減衰点)
	 確度 ±(0.1% of reading + 0.05% of range) ただし、NULL機能がONでラインフィルがON。 温度係数:
	5~20℃または26~40℃の範囲で、0.03% of reading/℃を加算
	高調波測定モード 20Hz~10kHzの範囲で, ±(0.1% of reading + 0.05% of range)。 のときの確度(CH8) 適用される最大次数は, 253751または253752装着時と同じ。 適用されない周波数帯域の確度: 0.005×f×(次数)% of readingを加算(設計値, fは対象次数の周 数(kHz))。
パルス入力	
	周波数測定レンジ Auto, 2kHz-200kHz, 250Hz-8kHz, 16Hz-800Hz, 1Hz-40Hz

周波数測定レンジ	Auto, 2kHz-200kHz, 250Hz-8kHz, 16Hz-800Hz, 1Hz-40Hz
振幅入力範囲	±5V
有効振幅	1V (Peak to Peak) 以上
入力波形	デューティサイクル50%の方形波
· 確度	±(0.05% of reading) ただし,観測時間は入力されるパルスの周期に対して300倍以上。

付録1 観測時間/サンプルレート/レコード長の関係

タイムベースが内部クロックの場合の観測時間/サンプルレート/レコード長の関係を以下 に示します。タイムベースが外部クロックの場合は、設定レコード長と外部クロックの周 波数によって観測時間が決まります。たとえば、外部クロックの周波数が100kHzで設定 レコード長が100kワードの場合、観測時間は約1秒になります。

通常測定モードのとき

● レコード長を分割しないとき(Acqメニューで[Rec Division]を[OFF]にしたとき)

	設定レコード長					
観測時間	10	0 k	1 M(オフ	パション)	4 M(オプション)	
記法」で引	サンプル レート (S/s)	表示レコ ード長 (ワード)	サンプル レート (S/s)	表示レコ ード長 (ワード)	サンプル レート (S/s)	表示レコ ード長 (ワード)
1 ks	100	100 k	1 k	1 M	4 k	4 M
400 s	250	100 k	2.5 k	1 M	10 k	4 M
200 s	500	100 k	5 k	1 M	20 k	4 M
100 s	1 k	100 k	10 k	1 M	40 k	4 M
40 s	2.5 k	100 k	25 k	1 M	100 k	4 M
20 s	5 k	100 k	50 k	1 M	200 k	4 M
10 s	10 k	100 k	100 k	1 M	250 k	2.5 M
4 s	25 k	100 k	250 k	1 M	1 M	4 M
2 s	50 k	100 k	500 k	1 M	1.25 M	2.5 M
1 s	100 k	100 k	1 M	1 M	2.5 M	2.5 M
400 ms	250 k	100 k	2.5 M	1 M	5 M	2 M
200 ms	500 k	100 k	5 M	1 M	5 M	1 M
100 ms	1 M	100 k	5 M	500 k	5 M	500 k
40 ms	2.5 M	100 k	5 M	200 k	5 M	200 k
20 ms	5 M	100 k	5 M	100 k	5 M	100 k
10 ms	5 M	50 k	5 M	50 k	5 M	50 k
4 ms	5 M	20 k	5 M	20 k	5 M	20 k
2 ms	5 M	10 k	5 M	10 k	5 M	10 k
1 ms	5 M	5 k	5 M	5 k	5 M	5 k
400 µs	5 M	2 k	5 M	2 k	5 M	2 k
200 µs	5 M	1 k	5 M	1 k	5 M	1 k
100 µs	5 M	500	5 M	500	5 M	500
40 µs	5 M	200	5 M	200	5 M	200
20 µs	5 M	100	5 M	100	5 M	100
10 µs	5 M	50	5 M	50	5 M	50

	設定レコード長					
観測時間	10	0 k	1 M(オフ	プション)	4 M(オプション)	
Brand with int	サンプル レート (S/s)	表示レコ ード長 (ワード)	サンプル レート (S/s)	表示レコ ード長 (ワード)	サンプル レート (S/s)	表示レコ ード長 (ワード)
1 ks	50	50 k	500	500 k	2 k	2 M
400 s	125	50 k	1.25 k	500 k	5 k	2 M
200 s	250	50 k	2.5 k	500 k	10 k	2 M
100 s	500	50 k	5 k	500 k	20 k	2 M
40 s	1.25 k	50 k	12.5 k	500 k	50 k	2 M
20 s	2.5 k	50 k	25 k	500 k	100 k	2 M
10 s	5 k	50 k	50 k	500 k	200 k	2 M
4 s	12.5 k	50 k	125 k	500 k	500 k	2 M
2 s	25 k	50 k	250 k	500 k	1 M	2 M
1 s	50 k	50 k	500 k	500 k	1.25 M	1.25 M
400 ms	125 k	50 k	1.25 M	500 k	5 M	2 M
200 ms	250 k	50 k	2.5 M	500 k	5 M	1 M
100 ms	500 k	50 k	5 M	500 k	5 M	500 k
40 ms	1.25 M	50 k	5 M	200 k	5 M	200 k
20 ms	2.5 M	50 k	5 M	100 k	5 M	100 k
10 ms	5 M	50 k	5 M	50 k	5 M	50 k
4 ms	5 M	20 k	5 M	20 k	5 M	20 k
2 ms	5 M	10 k	5 M	10 k	5 M	10 k
1 ms	5 M	5 k	5 M	5 k	5 M	5 k
400 µs	5 M	2 k	5 M	2 k	5 M	2 k
200 µs	5 M	1 k	5 M	1 k	5 M	1 k
100 µs	5 M	500	5 M	500	5 M	500
40 µs	5 M	200	5 M	200	5 M	200
20 µs	5 M	100	5 M	100	5 M	100
10 µs	5 M	50	5 M	50	5 M	50

● レコード長を分割したとき(Acqメニューで[Rec Division]を[ON]にしたとき)

高調波測定モードのとき

下表の設定レコード長は、100k、1M(オプション)、4M(オプション)ワードの中から選択 できます。

PLLソースの 基本周波数 f (Hz)	サンプル レート (S/s)	観測時間(s) (設定レコード長/サンプルレート)で求められます。				
. (=,	(0.0)	100kワードのとき 1Mワードのとき 4Mワードのと				
20 - 40	f×4096	約0.6~1.6	約6.1~16.3	約24.4~65.1		
40 - 80	f×2048	約0.6~1.6	約6.1~16.3	約24.4~65.1		
80 - 160	f×1024	約0.6~1.4	約6.1~14.0	約24.4~55.8		
160 -320	f×512	約0.6~1.6	約6.1~16.3	約24.4~65.1		
320 - 640	f×256	約0.6~1.6	約6.1~16.3	約24.4~65.1		
640 - 1280	f×128	約0.6~1.6	約6.1~16.3	約24.4~65.1		
1280 - 2560	f×64	約0.6~1.4	約6.1~14.2	約24.4~56.8		
2560 - 6400	f×32	約0.5~1.4	約4.9~14.2	約24.4~56.8		

● レコード長を分割しないとき(Acqメニューで[Rec Division]を[OFF]にしたとき)

● レコード長を分割したとき(Acqメニューで[Rec Division]を[ON]にしたとき)

PLLソースの 基本周波数 f (Hz)	サンプル レート (S/s)	● 観測時間(s) ((設定レコード長/2)/サンプルレート)で求められます 100kワードのとき 1Mワードのとき 4Mワードのと				
. ()	(0,0)					
20 - 40	f×4096	約0.3~0.8	約3.1~8.1	約12.2~32.6		
40 - 80	f×2048	約0.3~0.8	約3.1~8.1	約12.2~32.6		
80 - 160	f×1024	約0.3~0.7	約3.1~7.0	約12.2~27.9		
160 -320	f×512	約0.3~0.8	約3.1~8.1	約12.2~32.6		
320 - 640	f×256	約0.3~0.8	約3.1~8.1	約12.2~32.6		
640 - 1280	f×128	約0.3~0.8	約3.1~8.1	約12.2~32.6		
1280 - 2560	f×64	約0.3~0.7	約3.1~7.1	約12.2~28.4		
2560 - 6400	f×32	約0.2~0.7	約2.4~7.1	約9.8~28.4		

Note _

PLLソースの基本周波数の項目にはヒステリシスをもたせています。

付録2 測定ファンクションの記号と求め方

通常測定モードの測定ファンクション

通常測定モードの 測定ファンクション	求め方,演算式					
真の実効値 Urms	Urms	Umn	Udc	Uac	U+pk	U-pk
電圧 単純平均 Udc U [V] 交流成分 Uac 最大値 U+pk 最小値 U-pk	$\sqrt{\frac{1}{T}} \int_0^T u(t)^2 dt$	$\frac{\pi}{2\sqrt{2}}\frac{1}{T}\int_0^T u(t) dt$	$\frac{1}{T} \int_0^T u(t) dt$	$\sqrt{\text{Urms}^2 - \text{Udc}^2}$	最大値	最小値
真の実効値 Irms 平均値敷流実効値校正 Imn	Irms	Imn	ldc	lac	l+pk	l-pk
	$\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt$	$\frac{\pi}{2\sqrt{2}}\frac{1}{T}\int_0^T i(t) dt$	$\frac{1}{T} \int_0^T i(t) dt$	$\sqrt{\rm Irms^2 - Idc^2}$	最大値	最小値
fU (FreqU), fl (FreqI) [Hz]	電圧の	D周波数(fU)と電流の	周波数(fl)は	, ゼロクロス検出(こより測定。	
電圧のフォームファクタ FfU 電流のフォームファクタ Ffl	電圧のフォーム	Aファクタ FfU = $\frac{U}{2\sqrt{2}}$	rms 2 Umn	電流のフォームファ	クタ Ffl=- 2	$\frac{\text{Irms}}{\frac{2\sqrt{2}}{\pi}}\text{Imn}$
電圧のクレストファクタ CfU 電流のクレストファクタ Cfl	電圧のクレストファクタ CfU = <u>Upk</u> Urms Upk=IU+pklまたはIU-pklの どちらか大きい方					lpk rms
有効電力 P [W]	$\frac{1}{T}\int_{0}^{T}u(t)\cdot i(t) dt$					
皮相電力 S [VA]	Urms・Irms (Umn・Imn) rms/mn/dcの組み合わせを選択できます。10.4節参照。 (Udc・Idc))
無効電力 Q [var]	√S²-	ア ファームウエ P ² 位相が進んで	アバージョン いる場合,	ン2.01以降の製品(「一」の符号が付き	PZ4000)で きます。	は,
力率 λ			<u>Р</u> S			
位相差	cos⁻¹	 (P) 位相角は進み 10.6節参照。 	(D)/遅れ(G))表示と 360 °表示の	切り替えが	できます。
負荷回路のインピーダンス Ζ [Ω]			Urms Irms			
負荷回路の直列抵抗 Rs [Ω]			P Irms ²	-		
負荷回路の直列リアクタンス Xs [Ω]			Q Irms ²	Q Irms ²		
負荷回路の並列抵抗 Rp [Ω] (=1/G)	Urms ² P		_			
負荷回路の並列リアクタンス Xp [Ω] (=1/B)	Urms ² Q					
	IEC76-1(197	'6), IEEE C57.12.90- 1	1993	IEC76	-1(1993)	
Corrected Powr Pc [W]	P P1 + P2 (Ur Ur	ms) ² P1, P2:適用 mn) ² 定められて(月規格に いる係数	P (1 + <u>U</u>	<u>mn – Urms</u> Umn)

Note .

 ・ 周期Tは、測定/演算区間の設定によって決まります。t=0が開始(Start)点、t=Tが終了(End) 点です。詳細は、10.1節をご覧ください。

· u(t)が電圧信号のサンプリングデータ,i(t)が電流信号のサンプリングデータを表します。

· Speed, Torque, Sync, Slip, Pm, モータ効率, トータル効率については, 15章をご覧ください。

 ・ 無効電力(Q)の極性や位相角(φ)の進み(D)/遅れ(G)は、電圧と電流がともに正弦波のとき正し<<認識されます。測定レンジに対する電圧と電流の入力の割合が大きく異なるときや、電圧や 電流がひずんでいるときには、正しく認識できない場合があります。

・ 無効電力(Q)、力率(λ)、位相(φ)、およびインダクタンス(XsとXp)は、選択した演算式に従っ て求められる皮相電力(S)を使って演算されます。

高調波測定モードとモータ評価の測定ファンクション

미미 //Х		. 一 ゞ 計 屾の 創 足 ノ ア ノ フ フ ヨ ノ (表1//					
		求め方,演算式					
	高調波測定モードと	測定	【ファンクションの()内の	文字/数值			
	ーマ計画の 測定ファンクション	dc (k = 0のとき)	1 (k = 1のとき)	k (k = 2∼maxのとき)	全体 (Total) {()無し}		
	電圧 U() [V]	U(dc) =ur(0)	$U(k) = \sqrt{\frac{ur(k)}{ur(k)}}$	$\frac{(k)^{2}}{2}$	$\mathbf{U} = \sqrt{\sum_{k=\min}^{\max} \mathbf{U}(k)^2}$		
	電流 I()[A]	l(dc) = ir(0)	$I(k) = \sqrt{\frac{ir(k)}{ir(k)}}$	$\frac{1}{2} + i_{j}(k)^{2}$	$I = \sqrt{\sum_{k=\min}^{\max} I(k)^2}$		
	有効電力 P()[W]	P(dc) = ur(0) ⋅ ir(0)	$P(k) = ur(k) \cdot ird$	(k) + uj(k) • ij(k)	$\mathbf{P} = \sum_{\mathbf{k} = \min}^{\max} \mathbf{P}(\mathbf{k})$		
	皮相電力 S()[VA]	S(dc) = P(dc)	$S(k) = \sqrt{P(k)}$	$(k)^{2} + Q(k)^{2}$	$S = \sqrt{P^2 + Q^2}$		
	無効電力 Q()[var]	Q(dc) = 0	Q(k) = ur(k) • ij	(k) — uj(k)∙ir(k)	$Q = \sum_{k = \min}^{\max} Q(k)$		
	力率 λ()	$\lambda(dc) = \frac{P(dc)}{S(dc)}$	λ (k) = -	<u>P(k)</u> S(k)	$\lambda = \frac{P}{S}$		
			φ (k) =ATAN 2	2{P(k), Q(k)}	φ (k) =ATAN2{P, Q}		
			上式ATAN2{x, y}の訪	$\left\{\frac{y}{x}\right\}$			
	位相差	_		$tan^{-1}\left\{\frac{y}{x}\right\} + 180^{\circ}$			
				$\tan^{-1}\left\{\frac{y}{x}\right\} - 180^{\circ}$			
	U(1)に対する位相差	_			-		
	l(1)に対する位相差	_	_	øl(k) = l(1)に対 するl(k)の位相差	_		
負荷	苛回路のインピーダンス Z() [Ω]	$Z(dc) = \left \frac{U(dc)}{I(dc)} \right $	$Z(k) = \left \frac{U(k)}{I(k)} \right $		_		
	負荷回路の直列抵抗 Rs() [Ω]	$Rs(dc) = \frac{P(dc)}{I(dc)^2}$	$Rs(k) = \frac{P(k)}{I(k)^2}$		_		
負荷	回路の直列リアクタンス Xs()[Ω]	$Xs(dc) = \frac{Q(dc)}{I(dc)^2}$	$Xs(k) = \frac{Q(k)}{I(k)^2}$		_		
	負荷回路の並列抵抗 Rp()[Ω] (= 1/G)	$Rp(dc) = \frac{U(dc)^2}{P(dc)}$	$Rp(k) = \frac{U(k)^2}{P(k)}$		_		
負荷	i回路の並列リアクタンス Xp() [Ω] (= 1/B)	$Xp(dc) = \frac{U(dc)^2}{Q(dc)}$	Xp(k) =	$Xp(k) = \frac{U(k)^2}{Q(k)}$			
	回転速度 Speed	_	_		Speed = Spdr(0)		
モ ー	トルク Torque()	Trq(dc) = trqr(0)	$Trq(k) = \sqrt{\frac{trq_r(k)^2 + trq_i(k)^2}{2}}$		$Trq = \sqrt{\sum_{k=\min}^{\max} Trq(k)^2}$		
タ 評 価	同期速度 Sync	_			Sync= <u>120 • (fU or fl)</u> Pole		
1	モータ出力 Pm	—	-		$Pm=trqr(0)\cdot spdr(0)\cdot \frac{2\pi}{60}$		
すべり Slip		_	_		Slip = <u> Sync - Speed</u> Sync		

(次ページに続く)

Note

- · kは高調波次数, rは実数部 , jは虚数部を表します。
- minは, 最小次数(Min Order)として, 0(直流成分)または1(基本波成分)から選択できます。詳細は, 10.7節をご覧ください。
- ・maxは,解析次数上限値(17.5節参照)です。解析次数上限値は,PLLソースの周波数によって 最大500次までの範囲で自動的に決まります。
- ・ Speed, Torque, Sync, Slipの数値データは0次(直流)成分です。高調波測定モードでの最小 次数(Min Order)の初期設定は1次になっています。Speed, Torque, Sync, Slipの数値デー タを表示するには、最小次数を0次にする必要があります。
- ・通常測定モード時のTorqueの数値データは、単純平均の値です。高調波測定モード時の Torqueの各高調波成分と全体(Total)の数値データは、実効値です。通常測定モード時と同じ 数値データは、Trq(dc)のところに表示されます。
- ・ PLLソース(fUまたはfl)と周波数同期ソース(Sync Speed Source)が同じチャネルに設定されているときにだけ、SyncとSlipの数値データが表示されます。
- 本機器の高調波測定モードの皮相電力(S)または無効電力(Q)は、本機器の通常測定モードの測 定値や測定原理が異なる他の機器の測定値と異なる場合があります。

(表2/2) 求め方, 演算式 測定ファンクションの()内の文字/数値は, 高調波測定モードの dc (k = 0のとき)またはk (k = 1~maxのとき) 測定ファンクション ひずみ率の演算式の ひずみ率の演算式の 分母が全体(Total)のとき 分母が基本波(Fundamental)のとき <u>U(k)</u> • 100 <u>U(k)</u> • 100 電圧の高調波含有率 Uhdf()[%] U U(1) <u>l(k)</u> • 100 電流の高調波含有率 <u>l(k)</u> • 100 Ihdf()[%] I I(1) <u>P(k)</u> • 100 <u>P(k)</u> • 100 有効電力の高調波含有率 P(1) Ρ Phdf() [%] max max γ 電圧の全高調波ひずみ U(k)² , U(k)² Uthd [%] = 2 ·100 ·100 U U(1) max max Σ 電流の全高調波ひずみ , l(k)² , I(k)² Ithd [%] . 100 ·100 I(1) I $\sum P(k)$ Σ 有効電力の全高調波ひずみ _ P(k) = 2 Pthd [%] 100 ·100 D P(1) {λ**(k) · l(k)**}² ·100 Σ {λ(k) · U(k)}² · 100 Σ 電圧のtelephone harmonic factor Uthf [%] Uthf = lthf =11 電流のtelephone harmonic factor Ithf [%] λ(k):適用規格(IEC34-1(1996))に定められている係数 電圧のtelephone influence factor Utif Utif = {T(k) • U(k)}² ltif = ${T(k) \cdot I(k)}^2$ 11 T 電流のtelephone influence factor Itif T(k):適用規格(IEEE Std 100(1992))に定められている係数 ⁶ U(k)² •100 Harmonic voltage factor hvf [%] l(k)² ·100 hvf = hcf = Harmonic current factor hcf [%] U k 電圧の周波数 fU (FreqU) [Hz] 電圧(fU)または電流(fl)のうち,PLLソースに選択されている信号の周波数を表示します。 電流の周波数 fl (Freql) [Hz] 選択されていない信号の表示は、バー表示になります。

Note _

- kは高調波次数を表します。
- ・maxは,解析次数上限値(17.5節参照)です。解析次数上限値は,PLLソースの周波数によって 最大500次までの範囲で自動的に決まります。

Σファンクション

下表は、エレメント1と2または1と2と3が、表中の結線方式に設定されているときを表しています。エレメント2と3、3と4が、表中の1P3Wまたは3P3Wの結線方式に設定されているときは、演算式中の1と2を2と3、3と4にそれぞれ置き換えてください。エレメント2と3と4が、表中の3V3Aまたは3P4Wの結線方式に設定されているときは、演算式中の1と2と3を2と3と4にそれぞれ置き換えてください。

測定ファンクション (Σファンクション)			演算	夏式		
		単相3線式(1P3W)	三相3線式(3P3W)	3電圧3電流計法(3V3A)	三相4線式(3P4W)	
	通常測定モ	ードのとき				
	UrmsΣ	(Urms1 + Urms2) / 2		(Urms1 + Urms2 + Urms3) / 3		
	UmnΣ	(Umn1 + U	Umn2) / 2	(Umn1 + Umn2 + Umn3) / 3		
U [V]	UdcΣ	(Udc1 + U	Udc2) / 2	(Udc1 + Udc2	2 + Udc3) / 3	
	UacΣ	(Uac1 + U	Uac2) / 2	(Uac1 + Uac2	2 + Uac3) / 3	
	高調波測定	モードのとき		1		
	UΣ	(U1 + U	U2) / 2	(U1 + U2	+ U3) / 3	
	通常測定モ	ードのとき				
	lrmsΣ	(Irms1 + I	rms2) / 2	(Irms1 + Irms2 + Irms3) / 3		
	lmnΣ	(lmn1 + l	lmn2) / 2	(Imn1 + Imn2	2 + lmn3) / 3	
I [A]	ldcΣ	(ldc1 + l	ldc2) / 2	(ldc1 + ldc2	: + ldc3) / 3	
	lacΣ	(lac1 + l	ac2) / 2	(lac1 + lac2	+ lac3) / 3	
	高調波測定	モードのとき		I		
	IΣ	(1 +	2) / 2	(l1 + l2 -	+ 13) / 3	
Ρ Σ [W]			P1 + P2		P1 + P2 + P3	
	通常測	定モードのとき	i	i		
S Σ [VA]		S1 + S2	$\frac{\sqrt{3}}{2}$ (S1 + S2)	$\frac{\sqrt{3}}{3}$ (S1 + S2 + S3)	S1 + S2 + S3	
	高調波	測定モードのとき	·			
		$\sqrt{P\Sigma^2 + Q\Sigma^2}$				
QΣ [var]			Q1 + Q2		Q1 + Q2 + Q3	
λΣ			<u>F</u> 5			
φΣ [°]			COS-1	$\left(\frac{P\Sigma}{S\Sigma}\right)$ (通常測定モード	のときだけ)	
Ζ Σ [Ω]			<u> </u>	<u>Σ</u> I sΣ² (通常測定モードの。	ときだけ)	
Rs Σ [Ω]		<mark>- PΣ</mark> IrmsΣ ² (通常測定モードのときだけ)				
Χs Σ [Ω]			 Irm	<u>Σ</u> (通常測定モードの)	ときだけ)	
Rp Σ [Ω] (= 1/G)			<u>Urr</u> P	nsΣ² (通常測定モードの)	ときだけ)	
XpΣ [Ω] (= 1/B)			<u>Urr</u> G	nsΣ² (通常測定モードの)	ときだけ)	
Ρc Σ [W]		Pc1 + Pc2 Pc1 + (通常測) (通常測定モードのときだけ) ときだに			Pc1 + Pc2 + Pc3 (通常測定モードの ときだけ)	
η (効率1) [%]		<u>ΡΣΒ</u> ΡΣΑ・100 (通常測定モードのときだけ)				
1/ η (効率2) [%]			<u>ΡΣΑ</u> ΡΣΒ	•100 (通常測定モードの	ときだけ)	

Note _

· PΣ, QΣ, およびλΣは, 通常測定モード/高調波測定モードに共通の演算式です。

・ 各記号は,通常測定モードまたは高調波測定モードのときに求められる各エレメントの測定 ファンクションを表します。詳細は,1.2節,付-4~付-6ページをご覧ください。

· SAとSBのA, Bは, 結線方式の組み合わせを示します。詳細は, 5.2節をご覧ください。

· Speed, Torque, Sync, Slip, Pm, モータ効率, トータル効率については, 15章をご覧くだ さい。

付録3 デルタ演算の求め方

デルタ演算メニュー/サンプリングデータ/演算結果を表示するときの記号

表中の各サンプリングデータが次ページの演算式に代入され、各演算結果が求められます。

デルタ演算の メニュー	次ページの演 サンプリ	算式に代入される リングデータ i(t)	測定/演算区間が ゼロクロス設定のときの ゼロクロス検出対象信号	演算結果を表示 するときの記号	備考
u1–u2	u1 – u2	1(1)	Element1の項で 選択した信号	∆Urms1 ∆Umn1 ∆Udc1 ∆Uac1	
i1–i2		i1 – i2	Element1の項で 選択した信号	∆lrms1 ∆lmn1 ∆ldc1 ∆lac1	
3D3///	u1 – u2	- i1 - i2	Element1の項で 選択した信号	ΔUrms1 ΔIrms1 ΔUmn1 ΔImn1 ΔUdc1 ΔIdc1 ΔUac1 ΔIac1	前提条件 i1 + i2 + i3 = 0
⊳3V3A	u3 – u4	- i3 - i4	Element3の項で 選択した信号	ΔUrms3 ΔIrms3 ΔUmn3 ΔImn3 ΔUdc3 ΔIdc3 ΔUac3 ΔIac3	
	u1 – <u>(u1+u2)</u> 3			∆Urms1 ∆Umn1 ∆Udc1 ∆Uac1	
Delta	u2 – <u>(u1+u2)</u> 3		Element1の項で	∆Urms2 ∆Umn2 ∆Udc2 ∆Uac2	前提条件 三角結線の重心を 星形結線の中心と して演算
⊳Star	- <u>(u1+u2)</u> 3		選択した信号	∆Urms3 ∆Umn3 ∆Udc3 ∆Uac3	
		i1 + i2 + i3		∆Irms4 ∆Imn4 ∆Idc4 ∆lac4	
	u1 – u2			∆Urms1 ∆Umn1 ∆Udc1 ∆Uac1	
Star ⊳Delta	u2 – u3		Element1の項で	∆Urms2 ∆Umn2 ∆Udc2 ∆Uac2	
	u3 – u1		選択した信号	∆Urms3 ∆Umn3 ∆Udc3 ∆Uac3	
		i1 + i2 + i3		∆Irms4 ∆Imn4 ∆Idc4 ∆Iac4	

Note _

u1はエレメント1の電圧のサンプリングデータ,u2はエレメント2の電圧のサンプリングデー タ,u3はエレメント3の電圧のサンプリングデータ,u4はエレメント4の電圧のサンプリング データ,i1はエレメント1の電流のサンプリングデータ,i2はエレメント2の電流のサンプリン グデータ,i3はエレメント3の電流のサンプリングデータ,i4はエレメント4の電流のサンプリ ングデータです。

Note _

- 演算対象のサンプリングデータが無い(たとえば、入力モジュールが装着されていない)場合、
 そのサンプリングデータを「0」として演算します。
- デルタ演算の対象となるエレメントの測定レンジやスケーリング(換算比や係数)を、できるだけ同じにすることをおすすめします。異なる測定レンジやスケーリングにしていると、サンプリングデータの測定分解能が異なるため、演算結果に誤差を生じます。

デルタ演算メニュー/All表示のときの表示位置

			All表示のと [、]	きの表示形態			
デルタ演算の メニュー	測定ファンクション の記号	Element1	Element2	Element3	Element4	ΣΑ	Σ Β
	∆Urm	∆Urms1					
	∆Umn	∆Umn1					
ui–uz	∆Udc	∆Udc1					
	∆Uac	∆Uac1					
	∆lrm	∆lrms1					
i1_i2	∆lmn	∆lmn1					
11-12	∆ldc	∆ldc1					
	∆lac	∆lac1					
	∆Urm	∆Urms1		∆Urms3			
	∆Umn	∆Umn1		∆Umn3			
	∆Udc	∆Udc1		∆Udc3			
3P3W	∆Uac	∆Uac1		∆Uac3			
⊳3V3A	∆lrm	∆lrms1		∆lrms3			
	∆lmn	∆lmn1		∆ lmn3			
	∆ldc	∆ldc1		∆ ldc3			
	∆lac	∆lac1		∆lac3			
	∆Urm	∆Urms1	∆Urms2	∆Urms3			
	∆Umn	∆Umn1	∆Umn2	∆Umn3			
	∆Udc	∆Udc1	∆Udc2	∆Udc3			
Delta	∆Uac	∆Uac1	∆Uac2	∆Uac3			
⊳Star	Δlrm				∆ lrms4		
	∆lmn				∆lmn4		
	∆ldc				∆ ldc4		
	∆lac				∆lac4		
	∆Urm	∆Urms1	∆Urms2	∆Urms3			
	∆Umn	∆Umn1	∆Umn2	∆Umn3			
	∆Udc	∆Udc1	∆Udc2	∆ Udc3			
Star	∆Uac	∆Uac1	∆Uac2	∆Uac3			
⊳Delta	∆lrm				∆lrms4		
	∆lmn				∆lmn4		
	Δldc				∆ldc4		
	∆lac				∆lac4		

Note _

AI表示のとき、デルタ演算の結果は、上記のように各エレメントの位置に表示されますが、エ レメント番号との関係はありません。各演算結果の記号の意味は、前ページの表をご覧くださ い。たとえば、デルタ演算メニューで[i1-i2]を選択すると、「i1-i2」のデータで真の実効値を 演算し、「ΔIrms1」のところに、演算結果を表示します。

付録4 初期設定/数値データの表示順一覧表

初期設定(工場出荷時)

●入力モジュール253751の場合

項目	設定
Setup	
Mode	Normal
Wiring	1P2W-1P2W
Display Resolution	5 digits
	Ch1
	GIII
Input	
URange	2000Vpk
Terminal	5A
l Range	10Apk
Sensor Ratio	10.000mV/A
Line Filter	Off
Zero Cross Filter	Off
Scaling	Off
Pt Ratio	1.0000
Ct Ratio	1.0000
Scaling Factor	1.0000
Mode	On
Period	Zoro Cross
Element 1	Ch2
Element?	Ch6
Element 4	
	UII
User Function	
Function I	011
IVIODE	Off
Unit	
Expression	URMS(E1)
Function2	o <i>''</i>
Mode	Off
Unit	A
Expression	IRMS(E1)
Function3	
Mode	Off
Unit	V
Expression	UPPK(E1)
Function4	
Mode	Off
Unit	A
Expression	IPPK(E1)
S Formula	Urms*Irms
Averaging	
Mode	Off
Count	2
Phase	180Lead/Lag
PcFormula	5
Pc Formula	IEC76-1(1976)
P1	0.5000
P2	0.5000
· C	0.0000

付録4 初期設定/数値データの表示順一覧表

	設化
IVIeasure(Harmonics)	0
Start POS	0
User Function	
Function I	Off
IVIOUE	UII
Urill	
Expression Euroption2	U(ET,ORT)
Fulliction iz	Off
MOUE Lioit	
Urill	
EXPLESSION Expetion2	I(EI,ORI)
Fullotions	Off
linit	
Expression	
Expression	F(LI,ORI)
Mode	Off
Unit	
Expression	
Min Order	1
Max Order	100
	/Total
l rigger	04
Node	
Source	CITI Edeo
Type Edge	Edåe
Euge	Dies
Siope	
Level	0.0%
Condition	
Contar Laval	0.0%
Width Lovel	25.0%
Position	00/
Pelay	
	0.003
Eormat	Numeric+Maye
Item Amount	8
Numeric Disp Items	0
Norm Item No	1
Function	l Irms
Flement	1
Wave Setting	
Wave Format	Sinale
Interpolate	Line
Graticule	Grid(IIII)
Scale Value	On
Trace Label	Off
Mapping	Auto
Bar	
Bar Item No.	1
Function	U
Element	1
Bar Marker1	1 order
Bar Marker2	13 order
Start Order	0
End Order	100
Vector	
Numeric	On

項目	設定	
Math		
Mode	Off	
Math 1		
Function	Off	
Expression	C1	
Unit	V	
Scaling	Auto	
Upper	1.0000E+2	
Lower	-1.0000E+2	
IVIATN2	044	
Everacion		
Lipit	Δ	
Scaling	Auto	
Upper	1 0000E+2	
lower	-1 0000E+2	
Start Point	0.000ms	
End Point	100.000ms	
FFT Points	1000	
FFT Window	Rect	
Cursor		
Туре	Off	
Cursor1 Trace	Ch1	
Cursor2 Trace	Ch1	
Zoom		
Mode	Main	
Zoom Format	Main	
Allocation	All On	
Z1		
∠1 Mag	X2.5	
Z1 Position	∠5.UUUMS	
	×25	
ZZ May 72 Position	へ <u>と</u> .つ 75 000mc	
	73.00000	

● 入力モジュール253752の場合(Input設定の項目だけを記載します。他の項目は、入力モジュール253751と同じです。)

項目	設定	
Input		
U Range	2000Vpk	
Terminal	5A	
l Range	10Apk	
Sensor Ratio	10.0000mV/A	
Line Filter	Off	
Zero Cross Filter	Off	
Scaling	Off	
Pt Ratio	1.0000	
Ct Ratio	1.0000	
Scaling Factor	1.0000	

● 入力モジュール253771の場合(Input設定の項目だけを記載します。他の項目は、入力モジュール253751と同じです。)

 項目	設定	
INPUT		
Range		
Speed(Ch7)	50Vpk	
Torque(Ch8)	50Vpk	
Sense Type	Analog	
Frequency Range	2k-200kHz	
Line Filter	Off	
ZeroCross Filter	Off	
Scaling		
Speed (Ch7)	1.0000	
Torque(Ch8)	1.0000	
Pm	1.0000	
Unit		
Speed(Ch7)	rpm	
Torque(Ch8)	Nm	
Pm	W	
Pulse N	60	
Pole	2	
Sync Speed Source	CH2	

●初期化を実行しても、工場出荷時の状態に戻らない項目 (設定情報として保存されますが、保存した設定情報を読み込んでも、本機器の設定には反映されない設定情報です。)

項目	設定
 通信	
GPIB	
アドレス	1
RS232	
Baud Rate	19200
Format	8-No-1
Rx-Tx	No-No
Terminator	Cr+Lf
SCSI ID	
Own ID	6
Date/Time	出荷時の日時
Message	English
LCD Brightness	2
File	
File Item	Setup
Wave	
Туре	Binay
Range	All
Сору	
Сору То	Printer

付録

付

数値データの表示順

・数値データの並びをリセットすると、次表の順に各測定ファンクションのデータが表示 されます。

エレメント1の測定ファンクションのデータ並びのあとにエレメント2の測定ファンクションのデータ、順次、エレメント2のあとにエレメント3、エレメント3のあとにエレメント4、エレメント4のあとにNA、NAのあとにNBの測定ファンクションのデータが表示されます。

通常測定モー	ドのとき

順番	測定ファンクション	エレメント
1	Urms	1
2	Umn(mean)	1
3	Udc	1
4	Uac	1
5	Irms	1
6	lmn(mean)	1
7	Idc	1
8	lac	1
9	Р	1
10	S	1
11	Q	1
12	λ	1
13	φ	1
14	fU(FreqU)	1
15	fl(Freql)	1
16	U+pk	1
17	U-pk	1
18	l+pk	1
19	l-pk	1
20	CfU	1
21	Cfl	1
22	FfU	1
23	Ffl	1
24	Z	1
25	Ks	
26	Xs	
27	Кр	
28	хр	1
29	P° *	1
30	η	1
31	1/η Γ1*	
32		1
33	FZ 50*	
34	F3	1
35	F4	1
30		1
37	ΔUmn(mean)	1
30 20		1
39		1
4U / 1		1
41		1
4 <u>८</u> 42		1
43	ΔIdU	I
441~00		

* エレメント1のところだけに表示されます。

モータモジュールを装着しているときは。以下のデータも表示されます。

順番	測定ファンクション	エレメント
44	Speed	1
45	Torque	1
46	Sync	1
47	Slip	1
48	Pm	1
49	ηmA	1
50	ηmB	1

付録4 初期設定/数値データの表示順一覧表

順番	測定ファンクション	エレメント	次数 ^{*1}
1	U	1	Total
2		1	Total
3	Ρ	1	Total
4	S	1	Total
5	Q	1	Total
6	U	1	1
7		1	1
8	Р	1	1
9	S	1	1
10	Q	1	1
11	λ	1	1
12	φ	1	1
13	φU	1	2
14	φl	1	2
15	fU	1	1
16	fl	1	1
17	Z	1	1
18	Rs	1	1
19	Xs	1	1
20	Rp	1	1
21	Хр	1	1
22	Uhdf	1	1
23	Ihdt	1	1
24	Phdf	1	1
25	Uthd	1	1
26	Ithd	1	1
27	Ptha		
28	Utht		
29	Itht	1	
30	Utif	1	
31	ITIT	1	
32	NVT b of	1	
33		1	1
34	φUI-U2 ²	1	
35	φUI-U3 ⁶	1	
30	φ∪ I-I I ²	1	1
37	$\phi \cup 1 - 12^{-1}$	1	1
30 20	φ∪ I-I3 - Γ1*2	1	1
39 40	F1 - F0*2	1	1
40	Г <u>С</u> ~ ГО*2	1	1
41	ГЭ ⁻ Ги*2	1	1
42	F4 ⁻	I	I
40.00			

● 高調波測定モードのとき

*2 エレメント1のところだけに表示されます。

モータモジュールを装着しているときは。以下のデータも表示され	ます	Γ.
--------------------------------	----	----

順番	測定ファンクション	エレメント	次数
43	Speed	1	0(dc)
44	Trq(dc)	1	0(dc)
45	Sync	1	0(dc)
46	Slip	1	0(dc)
47	Pm	1	0(dc)
48	ηmA	1	0(dc)
49	ηmB	1	0(dc)

付録 付

付録5 ASCIIヘッダファイルフォーマット

//YOKOGAWA ASCII FILE FORMAT

\$PublicInfo

FormatVersion Model	1.11 PZ4000			
Endian	Big			
DataFormat	Trace			
GroupNumber	4			
TraceTotalNumber	16			
DataOffset	0			
	-			
\$Group1				
TraceNumber	4			
BlockNumber	1			
TraceName	Ch1	Ch2	Ch3	Ch4
BlockSize	500	500	500	500
VResolution	4.5777764E-03	3.8148137E-04	7.6296274E-02	3.8148137E-04
VOffset	3.3738281E+00	8.2995603E-02	2.5000000E+03	1.2500000E+01
VDataType	IS2	IS2	IS2	IS2
VUnit	V	А	V	А
VPlusOverData	?	?	?	?
VMinusOverData	?	?	?	?
VIIIegalData	?	?	?	?
VMaxData	32767	32767	32767	32767
VMinData	-32768	-32768	-32768	-32768
HResolution	2.0000000E-07	2.0000000E-07	2.0000000E-07	2.0000000E-07
HOffset	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
HUnit	S	S	S	S
Date	1999/01/03	1999/01/03	1999/01/03	1999/01/03
Time	20:36:59	20:36:59	20:36:59	20:36:59
\$Group2				
TraceNumber	4			
BlockNumber	1			
TraceName	Ch5	Ch6	Ch7	Ch8
BlockSize	500	500	500	500
VResolution	7.6296274E-02	3.8148137E-04	7.6296274E-02	3.8148137E-04
VOffset	2.5000000E+03	1.2500000E+01	2.5000000E+03	1.2500000E+01
VDataType	IS2	IS2	IS2	IS2
VUnit	V	А	V	А
VPlusOverData	?	?	?	?
VMinusOverData	?	?	?	?
VIIIegalData	?	?	?	?
VMaxData	32767	32767	32767	32767
VMinData	-32768	-32768	-32768	-32768
HResolution	2.0000000E-07	2.0000000E-07	2.0000000E-07	2.000000E-07
HOffset HUnit Date Time	0.0000000E+00 s 1999/01/03 20:36:59	0.0000000E+00 s 1999/01/03 20:36:59	0.0000000E+00 s 1999/01/03 20:36:59	0.000000E+00 s 1999/01/03 20:36:59
---	--	---	---	---
\$Group3 TraceNumber BlockNumber TraceName BlockSize VResolution VOffset VDataType VUnit VPlusOverData VMinusOverData VMinusOverData VMinData HResolution HOffset HUnit Date Time	4 1 Ch1(CAL) 1024 4.57777764E-03 0.0000000E+00 IS2 V ? ? 32767 -32768 1.0000000E-06 0.000000E+00 s 1999/01/03 20:36:59	Ch2(CAL) 1024 3.8148137E-04 0.0000000E+00 IS2 A ? ? 32767 -32768 1.0000000E-06 0.000000E+00 s 1999/01/03 20:36:59	Ch3(CAL) 1024 7.6296274E-02 0.000000E+00 IS2 V ? ? 32767 -32768 1.0000000E-06 0.000000E+00 s 1999/01/03 20:36:59	Ch4(CAL) 1024 3.8148137E-04 0.0000000E+00 IS2 A ? ? ? 32767 -32768 1.0000000E-06 0.0000000E+00 s 1999/01/03 20:36:59
\$Group4 TraceNumber BlockNumber TraceName BlockSize VResolution VOffset VDataType VUnit VPlusOverData VMinusOverData VMinusOverData VMingalData VMaxData HResolution HOffset HUnit Date	4 1 Ch5(CAL) 1024 7.6296274E-02 0.000000E+00 IS2 V ? ? 32767 -32768 1.0000000E-06 0.000000E+00 S 1999/01/03 20.26/50	Ch6(CAL) 1024 3.8148137E-04 0.0000000E+00 IS2 A ? ? 32767 -32768 1.0000000E-06 0.000000E+00 s 1999/01/03 20.26.50	Ch7(CAL) 1024 7.6296274E-02 0.0000000E+00 IS2 V ? ? 32767 -32768 1.0000000E-06 0.000000E+00 s 1999/01/03 20.26.50	Ch8(CAL) 1024 3.8148137E-04 0.0000000E+00 IS2 A ? ? 32767 -32768 1.0000000E-06 0.000000E+00 S 1999/01/03 20.26:50

+ - ·

\$PrivateInfo				
Form	8.000000e+06			
InputModule	253752	253752	253771	253771
	253752	253752	253771	253771
Mode	NORMAL			
ModelVersion	2.01			

(注) ヘッダファイルは、当社の測定器に共通なファイルであるため、本機器に不要な データ(0のデータ)も含まれています。

● \$PublicInfo(共通情報)

FormatVersion:当社共通のヘッダファイルのバージョンNo. Model:機種名 Endian:保存時のエンディアンモード(Big)^{*1} DataFormat:BINARYファイルの波形データの格納形式(Trace)^{*2} GroupNumber:下記の「\$Group」の数 TraceTotalNumber:対象波形の合計個数 DataOffset:BINARYファイルの波形データの開始位置^{*3}

● \$Group1(グループ情報)

TraceNumber:このグループの波形数 BlockNumber:このグループのブロック数^{*4} TraceName:各波形の名称 BlockSize:各波形の1ブロックのデータ点数 VResolution: 各波形のY軸の変換式の係数VResolutionの値^{*5} VOffset:各波形のY軸の変換式の係数VOffsetの値^{*b} VDataType:各波形のBINARYファイルの波形データのタイプ^{*6} VUnit:各波形のY軸で使用する単位(データへの影響なし) VPlusOverData:各波形のBINARYデータがこの値以上のときはエラーデータ VMinusOverData:各波形のBINARYデータがこの値以下のときはエラーデータ VMaxData:各波形のBINARYデータの最大値 VMinData:各波形のBINARYデータの最小値 HResolution: 各波形のX軸の変換式の係数HResolutionの値^{*7} HOffset:各波形のX軸の変換式の係数HOffsetの値^{*7} HUnit:各波形のX軸で使用する単位(データへの影響なし) Date:トリガがかかった日付 Time:トリガがかかった時刻

● \$PrivateInfo(機種固有情報)

ModelVersion:機種のパージョンNo.
Form:パルスカウントのための内部クロック周波数 (モータモジュール装着時だけの追加情報)
MathBlockNo.:演算の対象ブロックNo.
FormMath1:Math1の対象波形とその内容
FormMath2:Math2の対象波形名とその内容
DisplayBlockSize:画面に表示されているデータ長(表示レコード長)
DisplayPointNo.:表示レコード長の左端が、メモリの何ポイント目なのかを示す値(表示オフセット,設定レコード長=表示レコード長のときは1)
PhaseShift:位相情報(進み:-,遅れ:+)
PTraceName:ロジック波形のピット情報

*1~*7については、次ページを参照してください。

ASCIIヘッダファイルの作成

フロッピーディスクに波形データ(Wave)を保存したときは、ディレクトリの中に、次の2つのファイルが自動的に作成されます。

- ・波形データファイル(.WVF)
- ・ASCIIヘッダファイル(.HDR)

このうち波形データファイルは、本機器に読み込むことができるファイルです(ただし, ASCIIヘッダファイル(.HDR)がないと、読み込めません)。ここで説明しているASCIIヘッ ダファイルは本機器で見ることはできません。パーソナルコンピュータで波形を解析する ときなどに利用してください。

- *1保存時のエンディアンモード Big:モトローラ68000系データ
- *2BINARYファイルの波形データの収録方式 Trace:各波形ごとに各ブロックをまとめた方式
- *3BINARYファイルの波形データの開始位置 ファイルの先頭からのオフセット,PZ4000は常に0
- *4グループの最大ブロック数 波形によってブロック数が異なる場合は最大のブロック数, PZ4000は常に1
- *5 各波形のY軸の変換式 Y軸値=VResolution×生データ+VOffset
- *6 データタイプ ISn:nバイトの符号付き整数 IUn:nバイトの符号なし整数 FSn:nバイトの符号付き実数 FUn:nバイトの符号なし実数 Bm:mビットデータ
- *7各波形のX軸の変換式 X軸値=HResolution×(データNo.-1)+HOffset

付録6 Floatファイルフォーマット

通常測定モードのとき

・電力測定モジュールだけを装着しているとき

アドレス	エレメント1の 数値データ	アドレス	エレメント2の 数値データ	アドレス	エレメント3の 数値データ	アドレス	エレメント4の 数値データ	アドレス	ΣAの 数値データ	アドレス	ΣBの 数値データ
0000	Urms	00AC	Urms	0158	Urms	0204	Urms	02B0	Urms	035C	Urms
0004	Umn	00B0	Umn	015C	Umn	0208	Umn	02B4	Umn	0360	Umn
8000	Udc	00B4	Udc	0160	Udc	020C	Udc	02B8	Udc	0364	Udc
000C	Uac	00B8	Uac	0164	Uac	0210	Uac	02BC	Uac	0368	Uac
0010	Irms	00BC	Irms	0168	Irms	0214	Irms	02C0	Irms	036C	Irms
0014	lmn	00C0	lmn	016C	lmn	0218	lmn	02C4	lmn	0370	lmn
0018	Idc	00C4	Idc	0170	Idc	021C	Idc	02C8	ldc	0374	Idc
001C	lac	00C8	lac	0174	lac	0220	lac	02CC	lac	0378	lac
0020	Ρ	00CC	Ρ	0178	Р	0224	Р	02D0	Ρ	037C	Ρ
0024	S	00D0	S	017C	S	0228	S	02D4	S	0380	S
0028	Q	00D4	Q	0180	Q	022C	Q	02D8	Q	0384	Q
002C	λ	00D8	λ	0184	λ	0230	λ	02DC	λ	0388	λ
0030	Φ	00DC	Φ	0188	Φ	0234	Φ	02E0	φ	038C	Φ
0034	fU	00E0	fU	018C	fU	0238	fU	02E4	NAN	0390	NAN
0038	fl	00E4	fl	0190	fl	023C	fl	02E8	NAN	0394	NAN
003C	U+pk	00E8	U+pk	0194	U+pk	0240	U+pk	02EC	NAN	0398	NAN
0040	U-pk	00EC	U-pk	0198	U-pk	0244	U-pk	02F0	NAN	039C	NAN
0044	I+pk	00F0	I+pk	019C	I+pk	0248	l+pk	02F4	NAN	03A0	NAN
0048	I-Pk	00F4	I-Pk	01A0	I-Pk	024C	I-Pk	02F8	NAN	03A4	NAN
004C	CfU	00F8	CfU	01A4	CfU	0250	CfU	02FC	NAN	03A8	NAN
0050	Cfl	00FC	Cfl	01A8	Cfl	0254	Cfl	0300	NAN	03AC	NAN
0054	FfU	0100	FfU	01AC	FfU	0258	FfU	0304	NAN	03B0	NAN
0058	Ffl	0104	Ffl	01B0	Ffl	025C	Ffl	0308	NAN	03B4	NAN
005C	Z	0108	Z	01B4	Z	0260	Z	030C	Z	03B8	Ζ
0060	Rs	010C	Rs	01B8	Rs	0264	Rs	0310	Rs	03BC	Rs
0064	Xs	0110	Xs	01BC	Xs	0268	Xs	0314	Xs	03C0	Xs
0068	Rp	0114	Rp	01C0	Rp	026C	Rp	0318	Rp	03C4	Rp
006C	Хр	0118	Хр	01C4	Хр	0270	Хр	031C	Хр	03C8	Хр
0070	Pc	011C	Pc	01C8	Pc	0274	Pc	0320	Pc	03CC	Pc
0074	η	0120	η	01CC	η	0278	η	0324	η	03D0	η
0078	1/η	0124	1/ ŋ	01D0	1/η	027C	1/η	0328	1/ η	03D4	1/η
007C	F1	0128	F1	01D4	F1	0280	F1	032C	F1	03D8	F1
0800	F2	012C	F2	01D8	F2	0284	F2	0330	F2	03DC	F2
0084	F3	0130	F3	01DC	F3	0288	F3	0334	F3	03E0	F3
0088	F4	0134	F4	01E0	F4	028C	F4	0338	F4	03E4	F4
008C	∆Urms	0138	∆Urms	01E4	∆Urms	0290	∆Urms	033C	NAN	03E8	NAN
0090	∆Umn	013C	∆Umn	01E8	∆Umn	0294	∆Umn	0340	NAN	03EC	NAN
0094	∆Udc	0140	∆Udc	01EC	∆Udc	0298	∆Udc	0344	NAN	03F0	NAN
0098	∆Uac	0144	∆Uac	01F0	∆Uac	029C	∆Uac	0348	NAN	03F4	NAN
009C	∆lrms	0148	∆lrms	01F4	∆lrms	02A0	∆lrms	034C	NAN	03F8	NAN
00A0	∆lmn	014C	Δ lmn	01F8	∆lmn	02A4	∆lmn	0350	NAN	03FC	NAN
00A4	∆ldc	0150	∆ldc	01FC	∆ldc	02A8	∆ldc	0354	NAN	0400	NAN
00A8	∆lac	0154	∆lac	0200	∆lac	02AC	∆lac	0358	NAN	0404	NAN

Note ____

- このフォーマットは、装着されているモジュール数に関係なく固定です。装着されているモジュールが1つの場合でも258(43ファンクション×6エレメント)データが保存されます。
- ・モジュールの装着有無に関わらず、 η , $1/\eta$, F1~F4はすべてのエレメントで同じデータが 保存されます。
- · NANや演算されていない測定ファンクションのところには、0x7FC00000が保存されます。
- データがプラス無限大の場合は0x7F800000,マイナス無限大の場合は0xFF800000が保存されます。

•	電力測定モジ	ュールとモー	タモジュー	-ルを装着して	いるとき
---	--------	--------	-------	---------	------

アドレス	エレメント1の 数値データ	アドレス	エレメント2の 数値データ	アドレス	エレメント3の 数値データ	アドレス	エレメント4の 数値データ	アドレス	ΣAの 数値データ	アドレス	ΣBの 数値データ
0000	Urms	00AC	Urms	0158	Urms	0204	Urms	02B0	Urms	035C	Urms
0004	Umn	00B0	Umn	015C	Umn	0208	Umn	02B4	Umn	0360	Umn
8000	Udc	00B4	Udc	0160	Udc	020C	Udc	02B8	Udc	0364	Udc
000C	Uac	00B8	Uac	0164	Uac	0210	Uac	02BC	Uac	0368	Uac
0010	Irms	00BC	Irms	0168	Irms	0214	Irms	02C0	Irms	036C	Irms
0014	lmn	00C0	lmn	016C	lmn	0218	lmn	02C4	lmn	0370	lmn
0018	ldc	00C4	ldc	0170	Idc	021C	ldc	02C8	Idc	0374	ldc
001C	lac	8000	lac	0174	lac	0220	lac	02CC	lac	0378	lac
0020	Ρ	00CC	Ρ	0178	Ρ	0224	Ρ	02D0	Ρ	037C	Ρ
0024	S	00D0	S	017C	S	0228	S	02D4	S	0380	S
0028	Q	00D4	Q	0180	Q	022C	Q	02D8	Q	0384	Q
002C	λ	00D8	λ	0184	λ	0230	λ	02DC	λ	0388	λ
0030	Φ	00DC	Φ	0188	Φ	0234	Φ	02E0	Φ	038C	Φ
0034	fU	00E0	FU	018C	fU	0238	fU	02E4	NAN	0390	NAN
0038	fl	00E4	FI	0190	fl	023C	fl	02E8	NAN	0394	NAN
003C	U+pk	00E8	U+pk	0194	U+pk	0240	U+pk	02EC	NAN	0398	NAN
0040	U-pk	00EC	U-pk	0198	U-pk	0244	U-pk	02F0	NAN	039C	NAN
0044	l+pk	00F0	l+pk	019C	l+pk	0248	l+pk	02F4	NAN	03A0	NAN
0048	I-Pk	00F4	I-Pk	01A0	I-Pk	024C	I-Pk	02F8	NAN	03A4	NAN
004C	CfU	00F8	CfU	01A4	CfU	0250	CfU	02FC	NAN	03A8	NAN
0050	Cfl	00FC	Cfl	01A8	Cfl	0254	Cfl	0300	NAN	03AC	NAN
0054	FfU	0100	FfU	01AC	FfU	0258	FfU	0304	NAN	03B0	NAN
0058	Ffl	0104	Ffl	01B0	Ffl	025C	Ffl	0308	NAN	03B4	NAN
005C	7	0108	7	01B4	7	0260	7	0300	7	03B8	7
0060	Rs	010C	Rs	01B8	Rs	0264	Rs	0310	Rs	03BC	Rs
0064	Xs	0110	Xs	0.1BC	Xs	0268	Xs	0314	Xs	0300	Xs
0068	Rn	0114	Rn	0100	Rn	0260	Rn	0318	Rn	0304	Rn
0060	Xn	0118	Xn	0100	Xn	0270	Xn	0310	Xn	0308	Xn
0000	Pc	0110	Pc	0104	Pc	0274	Pc	0320	Pc	0300	Pc
0070	n	0120	n	0100	n	0278	n	0327	n	0300	n
0074	1/n	0120	1/n	0100	1/n	0270	1/n	0328	1/n	0300	1/n
0070	⊑1	0124	⊑1	0100	E1	0270	⊑1	0320	⊑1	0304	F1
0070	F2	0120	F2	0104	F2	0200	F2	0320	F2	0300	F2
0000	E3	0120	E3	0100	F3	0204	F3	0334	F3	0350	E3
0004	Г 5 ЕЛ	0130	F 7	0100	Г 5 ЕЛ	0200	F J	0338	EN	03E0	EN
0000	Allro	0134	Allro		Allro	0200	Allro	0330	Spood	0364	Spood
0000		0130	Δ015 Δump			0290		0330	Jorguo	0320	Jorguo
0090	Audo	0130	Auto			0294	Audo	0340	Torque	03EC	Forque
0094		0140				0290		0344	Sync	0350	Sync
0098	∆Uac	0144	∆Uac	U IFU	∆Uac	0290	∆Uac	0348	Silp	03F4	Slip
0090	∆irms	0148	∆irms	01-4	∆irms	02AU	∆irms	0340	PM	U3F8	rm 🕯
UUAU	∆imn	014C	∆imn	011-8	⊿imn	U2A4	⊿imn	0350	ηmA	UJEC	ηmA
UUA4	∆ldc	0150	∆ldc	UIFC		U2A8	∆ldc	0354	ηmΒ	0400	ηmΒ
8AUU	∆lac	0154	∆lac	0200	∆lac	U2AC	∆lac	0358	NAN	0404	NAN

Note __

- このフォーマットは、装着されているモジュール数に関係なく固定です。装着されているモジュールが1つの場合でも258(43ファンクション×6エレメント)データが保存されます。
- ・モジュールの装着有無に関わらず、 η , $1/\eta$, F1~F4はすべてのエレメントで同じデータが 保存されます。
- · NANや演算されていない測定ファンクションのところには、0x7FC00000が保存されます。
- ・データがプラス無限大の場合は0x7F800000,マイナス無限大の場合は0xFF800000が保存されます。

高調波測定モードのとき

アドレス	数値データ	アドレス	数値データ
0000	測定値Total	_	_
0004	測定值DC成分	07D8	DC成分の含有率
8000	基本波(1次)成分	07DC	基本波成分の含有率
000C	2次高調波成分	07E0	2次高調波成分の含有率
\downarrow	Ļ	Ļ	\downarrow
07D4	500次高調波成分	0FAC	500次高調波成分の含有率

Note _

解析次数上限値が500次以下であっても、500次までのデータが保存されます。解析されていない次数のところには、NAN(0x7FC00000)が保存されます。

・測定ファンクションが上記以外、および次項の Σ List以外のとき(高調波測定値だけが保存されます。)

アドレス	数値データ	
0000	測定値Total	
0004	測定値DC成分	
8000	基本波(1次)成分	
000C	2次高調波成分	
Ļ	Ļ	
07D4	500次高調波成分	

Note ____

解析次数上限値が500次以下であっても、500次までのデータが保存されます。解析されていない次数のところには、NAN(0x7FC00000)が保存されます。

・ Σ Listのとき

・ファームウエアバージョン2.01より前の製品の場合

アドレス	エレメント1の 数値データ	アドレス	エレメント2の 数値データ	アドレス	エレメント3の 数値データ	アドレス	エレメント4の 数値データ	アドレス	ΣAの 数値データ	アドレス	ΣBの 数値データ
0000	Urms	006C	Urms	00D8	Urms	0144	Urms	01B0	Urms	021C	Urms
0004	Irms	0070	Irms	00DC	Irms	0148	Irms	01B4	Irms	0220	Irms
8000	Ρ	0074	Ρ	00E0	Р	014C	Р	01B8	Ρ	0224	Ρ
000C	S	0078	S	00E4	S	0150	S	01BC	S	0228	S
0010	Q	007C	Q	00E8	Q	0154	Q	01C0	Q	022C	Q
0014	λ	0080	λ	00EC	λ	0158	λ	01C4	λ	0230	λ
0018	φ	0084	φ	00F0	φ	015C	φ	01C8	φ	0234	φ
001C	fU	8800	fU	00F4	fU	0160	fU	01CC	fU	0238	fU
0020	fl	008C	fl	00F8	fl	0164	fl	01D0	fl	023C	fl
0024	Uthd	0090	Uthd	00FC	Uthd	0168	Uthd	01D4	Uthd	0240	Uthd
0028	lthd	0094	lthd	0100	Ithd	016C	lthd	01D8	lthd	0244	lthd
002C	Pthd	0098	Pthd	0104	Pthd	0170	Pthd	01DC	Pthd	0248	Pthd
0030	Uthf	009C	Uthf	0108	Uthf	0174	Uthf	01E0	Uthf	024C	Uthf
0034	lthf	00A0	lthf	010C	lthf	0178	lthf	01E4	lthf	0250	lthf
0038	Utif	00A4	Utif	0110	Utif	017C	Utif	01E8	Utif	0254	Utif
003C	ltif	00A8	ltif	0114	ltif	0180	ltif	01EC	ltif	0258	ltif
0040	hvf	00AC	hvf	0118	hvf	0184	hvf	01F0	hvf	025C	hvf
0044	hcf	00B0	hcf	011C	hcf	0188	hcf	01F4	hcf	0260	hcf
0048	NAN	00B4	NAN	0120	NAN	018C	NAN	01F8	φU1-U2	0264	φU1-U2
004C	NAN	00B8	NAN	0124	NAN	0190	NAN	01FC	фU1-UЗ	0268	φU1-U3
0050	NAN	00BC	NAN	0128	NAN	0194	NAN	0200	φ∪1-Ι1	026C	φU1-I1
0054	NAN	00C0	NAN	012C	NAN	0198	NAN	0204	φU1-I2	0270	φU1-l2
0058	NAN	00C4	NAN	0130	NAN	019C	NAN	0208	φU1-I3	0274	φU1-I3
005C	F1	00C8	F1	0134	F1	01A0	F1	020C	F1	0278	F1
0060	F2	00CC	F2	0138	F2	01A4	F2	0210	F2	027C	F2
0064	F3	00D0	F3	013C	F3	01A8	F3	0214	F3	0280	F3
0068	F4	00D4	F4	0140	F4	01AC	F4	0218	F4	0284	F4

Note ____

- ・ このフォーマットは、装着されているモジュール数や保存指定したエレメントに関係なく固定です。装着されているモジュールが1つの場合でも162(27ファンクション×6エレメント)データが保存されます。
- モジュールの装着有無に関わらず、F1~F4はすべてのエレメントで同じデータが保存されます。
- · NANや演算されていない測定ファンクションのところには、0x7FC00000が保存されます。
- ・データがプラス無限大の場合は0x7F800000,マイナス無限大の場合は0xFF800000が保存されます。

付録7 電力の基礎(電力/高調波/交流回路の三定数)

・ ファームウエアバージョン2.01以降の製品の場合

アドレス	エレメント1の 数値データ	アドレス	エレメント2の 数値データ	アドレス	エレメント3の 数値データ	アドレス	エレメント4の 数値データ	アドレス	ΣAの 数値データ	アドレス	ΣBの 数値データ
0000	Urms	005C	Urms	00B8	Urms	0114	Urms	0170	Urms	01CC	Urms
0004	Irms	0060	Irms	00BC	Irms	0118	Irms	0174	Irms	01D0	Irms
8000	Ρ	0064	Ρ	00C0	Ρ	011C	Ρ	0178	Ρ	01D4	Ρ
000C	S	0068	S	00C4	S	0120	S	017C	S	01D8	S
0010	Q	006C	Q	00C8	Q	0124	Q	0180	Q	01DC	Q
0014	λ	0070	λ	00CC	λ	0128	λ	0184	λ	01E0	λ
0018	Φ	0074	Φ	00D0	Φ	012C	Φ	0188	Φ	01E4	Φ
001C	Z	0078	Z	00D4	Z	0130	Z	018C	Z	01E8	Ż
0020	Xs	007C	Xs	00D8	Xs	0134	Xs	0190	Xs	01EC	Xs
0024	Rs	0800	Rs	00DC	Rs	0138	Rs	0194	Rs	01F0	Rs
0028	Хр	0084	Хр	00E0	Хр	013C	Хр	0198	Хр	01F4	Хр
002C	Rp	8800	Rp	00E4	Rp	0140	Rp	019C	Rp	01F8	Rp
0030	FU	008C	fU	00E8	fU	0144	FU	01A0	FU	01FC	FU
0034	FI	0090	fl	00EC	fl	0148	FI	01A4	FI	0200	FI
0038	Uthd	0094	Uthd	00F0	Uthd	014C	Uthd	01A8	Uthd	0204	Uthd
003C	Ithd	0098	lthd	00F4	lthd	0150	lthd	01AC	lthd	0208	lthd
0040	Pthd	009C	Pthd	00F8	Pthd	0154	Pthd	01B0	Pthd	020C	Pthd
0044	Uthf	00A0	Uthf	00FC	Uthf	0158	Uthf	01B4	Uthf	0210	Uthf
0048	lthf	00A4	lthf	0100	lthf	015C	lthf	01B8	lthf	0214	lthf
004C	Utif	00A8	Utif	0104	Utif	0160	Utif	01BC	Utif	0218	Utif
0050	Itif	00AC	ltif	0108	ltif	0164	ltif	01C0	ltif	021C	ltif
0054	hvf	00B0	hvf	010C	hvf	0168	Hvf	01C4	hvf	0220	Hvf
0058	hcf	00B4	hcf	0110	hcf	016C	Hcf	01C8	hcf	0224	Hcf

アドレス	数値データ
0228	φU1-U2
022C	φU1-U3
0230	φU1-I1
0234	φU1-I2
0238	φU1-I3
023C	F1
0240	F2
0244	F3
0248	F4
024C	Speed
0250	Torque
0254	Sync
0258	Pm
025C	ηmA
0260	nmB

Note __

- このフォーマットは、装着されているモジュール数や保存指定したエレメントに関係なく固定です。装着されているモジュールが1つの場合でも153データが保存されます。ただし、モータモジュールが装着されていない場合、Speed~nmBのところには、NAN(0x7FC00000)が保存されます。
- · NANや演算されていない測定ファンクションのところには、0x7FC00000が保存されます。
- データがプラス無限大の場合は0x7F800000,マイナス無限大の場合は0xFF800000が保存されます。

付録7 電力の基礎(電力/高調波/交流回路の三定数)

電力、高調波、交流回路の三定数などの基礎的な事項について、説明します。

電力

電気エネルギーは、電熱器や電気炉の熱、モータの回転力、蛍光灯や水銀灯の光などの各 エネルギーに変換されて利用されます。このような負荷に対して電気がする仕事(電気エネ ルギー)を、単位時間当たりの量で表したものが、電力(electric power)です。単位はW (ワット)を用い、1秒間に1ジュールの仕事をするとき、その電気エネルギーは1Wになり ます。

● 直流の電力

直流の電力P[W]は、加えられた電圧U[V]と流れる電流[A]との積で求められます。
 P=UI [W]

下図の例では、毎秒、これだけの電気エネルギーが電源から取り出され、抵抗R[Ω](負荷)で消費されます。

● 交流

通常,電力会社から供給される電気は交流で,その波形は正弦波です。交流の大きさの 表し方には,瞬時値,最大値,実効値,平均値などがあり,普通は,実効値で表現され ます。

正弦波交流の電流の瞬時値は、 $I_m \sin \omega t (I_m : 電流の最大値, \omega : 角速度で<math>\omega = 2\pi f, f :$ 正弦波交流の周波数)で表されます。この交流電流の熱作用^{*}は、 i^2 に比例し下図のように変化します。

* 抵抗に電流が流れることによって、電気エネルギーが熱エネルギーに変えられることです。

実効値(effective value)は、その交流電流と同じ熱作用を生じる直流の値になります。 同じ熱作用の直流の値をlとすれば、

$$I = \sqrt{i^2 O 1 周期 O 平均} = \sqrt{\frac{1}{2\pi}} \int_0^{2\pi} i^2 d\omega t = \frac{Im}{\sqrt{2}}$$

となります。1周期中の各瞬時値iの2乗の平均の平方根(root mean square, 略して rms)に当たるので,通常,実効値の意味として「rms」という記号を用います。

平均値(mean value)の場合,正弦波の1周期分の平均をそのままとるとゼロになってしまうので,絶対値をとって1周期分の平均をとります。実効値の場合と同じように,瞬時値i= I_m sin ω tの電流の平均値を I_m とすれば,

$$I_{mn} = |i| の1周期の平均 = \frac{1}{2\pi} \int_{0}^{2\pi} |i| d\omega t = \frac{2}{\pi} I_{m}$$

これらの関係は、正弦波の電圧についても同じです。

正弦波交流の最大値,実効値,平均値には,次の関係があります。交流波形の傾向を知るものとして,それぞれ波高率(crest factor),波形率(form factor)といいます。

● 交流のベクトル表示

電圧と電流の瞬時値は、それぞれ一般的に次のような式で表されます。

電圧:u=Umsinωt

電流:i=l_msin(ωt-φ)

電圧と電流間の時間的ずれを位相差といい、 φ を位相角といいます。この時間的ずれ は、主に電力が供給される負荷によって生じます。一般的に負荷に抵抗だけがあるとき は位相差ゼロ、負荷にインダクタンス(コイル状のもの)があるときは電流が電圧より遅 れ、負荷にコンデンサがあるときは電流が電圧より進みます。

電圧と電流の大きさや位相関係を分かりやすくするため、ベクトル表示が使われます。 垂直軸の上の方向を基準にとり、反時計方向の角度を正の位相角とします。 普通、ベクトルであることを明示する場合は、数量を表す記号の上に・印(ドット)をつ けます。ベクトルの大きさは実効値を表します。

三相交流の電圧と電流の位相の関係をベクトルで表示すると、次のようになります。

● 交流の電力

交流の電力は、負荷によって電圧と電流の間に位相差があるため、直流の電力のように 簡単に求められません。

電圧の瞬時値が $u=U_m \sin \omega t$,電流の瞬時値が $i=I_m \sin(\omega t-\phi)$ である場合,交流の電力の瞬時値pは,

 $p=u \times i=U_{m} \sin \omega t \times I_{m} \sin (\omega t - \phi) = U \cos \phi - U \cos(2\omega t - \phi)$

UとIは、それぞれ電圧と電流の実効値を表します。

pは時間に無関係の「Ulcos ϕ 」と、電圧や電流の2倍の周波数の交流分「-Ulcos(2 ω t - ϕ)」の和になります。

1周期の平均の電力を交流の電力といいます。1周期の平均をとると、交流の電力Pは、

P=Ulcos ¢ [W]

になります。

同じ電圧と電流でも、その位相差 ϕ によって電力が異なります。下図の横軸より上は正の電力(負荷に供給される電力)で、軸より下は負の電力(負荷から逆送される電力)です。この正負の差が負荷で消費される電力になります。電圧と電流の位相差が大きくなればなるほど負の電力が増加し、 $\phi = \pi/2$ では正負の電力が同じになって、電力を消費しなくなります。

電圧と電流の位相差がφのとき

電圧と電流の位相差が __のとき

● 有効電力と力率

交流の電気では、電圧と電流の積UIすべてが消費される電力ではありません。積UIは、 皮相電力S(apparent power)といわれ、見かけの電力を表します。単位はVA(ボルトア ンペア)です。皮相電力は、交流の電気で動く機器の電気容量を表すのに用いられま す。

皮相電力のうち,機器で消費される真の電力を有効電力P(active powerまたはeffective power)といい,これが前述の交流の電力と同じものです。

S=UI [VA]

 $P=U|\cos\phi$ [W]

 $\cos \phi$ は、皮相電力が真の電力になる割合を示したもので、これを力率 λ (power factor)といいます。

● 無効電力

電流が電圧Uより ϕ だけ遅れている場合、電流Iを、電圧Uと同一方向の成分Icos ϕ と直 角方向の成分Isin ϕ に分解すると、有効電力P=UIcos ϕ は、電圧Uと電流成分Icos ϕ の 積になります。これに対して、電圧Uと電流成分Isin ϕ の積は、無効電力Q(reactive power)といい、単位はvar(バール)です。

 $Q=Ulsin\phi$ [var]

Ů İsin ø Ícos φ

皮相電力S,有効電力P,無効電力Qとの間には、次の関係があります。 S²=P²+Q²

高調波

高調波とは、基本波(普通は商用周波数50/60Hzの正弦波)の整数倍の周波数をもつ正弦波 で、基本波以外のものをいいます。各種電気/電子機器に使用されている電源整流回路や 位相制御回路などに流れる入力電流によって、電源ライン上に高調波電流や電圧が発生し ます。基本波と高調波が一緒になると、波形にひずみを生じ、電源ラインに接続されてい る機器に障害が発生することがあります。

● 用語

高調波に関する用語として次のようなものがあります。

- ・基本波(基本波成分 fundamental wave (fundamental component) 周期性の複合波は異なる正弦波群にわけられ、そのうち最も周期の長い正弦波。または複合波の成分中、基本周波数をもつ正弦波。
- ·基本周波数 fundamental frequency
- 周期性の複合波では、その周期に相当する周波数。基本波の周波数。
- ・ひずみ波 distored wave
- 基本波と異なる波形をもつ波。
- · 高調波 higher harmonic
- 基本周波数の2以上の整数倍の周波数をもつ正弦波。
- · 高調波成分 harmonic component
 - 基本周波数の2以上の整数倍の周波数をもつ波形成分。
- ・ 高調波含有率
 ひずみ波に含まれている指定されたn次高調波の実効値と、基本波(または全波)の実
 効値の比。
- · 高調波次数 harmonic order
- 基本周波数に対する高調波の周波数の比で、整数。
- ・ 全高調波ひずみ total harmonic distortion
 全高調波の実効値と、基本波(または全波)の実効値の比。

● 高調波による障害

高調波が電気機器や設備におよぼす影響には、次のようなものがあります。

- ・調相用コンデンサや直列リアクトル
 高調波電流による回路のインピーダンスの減少で、過大な電流が流れ、振動、うなり、過熱、あるいは焼損の発生。
- ケーブル
 高調波電流が三相4線式の中性線に流れることによる中性線の過熱。
 変圧器
- 鉄心の磁歪音の発生,鉄損や銅損の増加。
- ・ブレーカやヒューズ
- 過大な高調波電流による誤動作、ヒューズの溶断。
- ・通信線
 - 電磁誘導作用によるノイズ電圧の発生。
- · 制御機器
 - 制御信号の乱れによる誤動作。
- ・ AV機器 性能や寿命の低下,ノイズによる映像のちらつきの発生,部品の故障。

交流回路の三定数

● 抵抗

抵抗R[Ω]の負荷に,瞬時値u=Umsin ω tの交流電圧を加えたときの電流は,次の式で 表されます。Imは電流の最大値を示します。

$$i = \frac{U_m}{R} \sin \omega t = I_m \sin \omega t$$

実効値で表せば、I=U/Rになります。 抵抗回路に流れる電流は、電圧に対して位相差がありません。

● インダクタンス

インダクタンスL[H]のコイル状の負荷に、瞬時値u=Umsinωtの交流電圧を加えたときの電流は、次の式で表されます。

$$i = \frac{U_m}{X_L} \sin\left(\omega t - \frac{\pi}{2}\right) = I_m \sin\left(\omega t - \frac{\pi}{2}\right)$$

実効値で表せば、I=U/X_Lになります。X_L= ω Lで、X_Lを誘導リアクタンス(inductive reactance)といい、単位は Ω です。

インダクタンスには、電流の変化(増加または減少)を妨げようとする働きがあり、電流 の位相が電圧より遅れます。

● 静電容量

静電容量C[F]のコンデンサの負荷に、瞬時値u=Umsinωtの交流電圧を加えたときの電流は、次の式で表されます。

$$i = \frac{U_m}{X_C} \sin\left(\omega t + \frac{\pi}{2}\right) = I_m \sin\left(\omega t + \frac{\pi}{2}\right)$$

実効値で表せば、 $I=U/X_C$ になります。 $X_C=1/\omega C$ で、 X_C を容量リアクタンス (capacitive reactance)といい、単位は Ω です。

コンデンサには、電圧の極性が変わったときに、電圧と同じ極性の最も大きい充電電流 が流れ、電圧が減少するときは、電圧と反対の極性の放電電流が流れます。このため電 流の位相が電圧より進みます。

● R, L, Cの直列回路

抵抗R_S[Ω], インダクタンスL[H], 静電容量C[F]の各負荷が直列に接続されているときの各電圧の関係は,次の式で表されます。

$$U = \sqrt{(U_{Rs})^{2} + (U_{L} - U_{C})^{2}} = \sqrt{(IRs)^{2} + (IX_{L} - IX_{C})^{2}}$$
$$= I\sqrt{(Rs)^{2} + (X_{L} - X_{C})^{2}} = I\sqrt{Rs^{2} + Xs^{2}}$$
$$I = \frac{U}{\sqrt{Rs^{2} + Xs^{2}}}, \quad \phi = \tan^{-1}\frac{Xs}{Rs}$$
$$\dot{U}_{L}$$

抵抗R_s,リアクタンスX_s,インピーダンスZの関係は,

$$Z = \sqrt{Rs^2 + Xs^2}$$

となります。

● R, L, Cの並列回路

抵抗R_P[Ω],インダクタンスL[H],静電容量C[F]の各負荷が並列に接続されているときの各電流の関係は、次の式で表されます。

抵抗R_P,リアクタンスX_P,インピーダンスZの関係は,

$$X_{P} = \frac{X_{L}X_{C}}{X_{C} - X_{L}}$$

$$Z = \frac{R_{P}X_{P}}{\sqrt{R_{P}^{2} + X_{P}^{2}}}$$

となります。

索引

記号

1P2W	
1P3W	
3P3W	
3P4W	
3V3A	

<u>A</u>

A/D変換器	1-3
ABORT	
Abort	
ACQ	
Allocation	
Analog	
ASCIIヘッダファイルフォーマット	付-16
Attribute	12-29
Auto Naming	
Averaging	10-18
AVG	1-38

В

Bar	
Bar Item No	
Bar Setting	

<u>C</u>

	4-6
evel	7-9
	13-8
	13-12
t 12-11, 13-5	5, 13-9
sion	13-12
۱	7-8
	14-2
	12-33
d Power 1-36,	10-17
	1-13
	5-21
	5-24
	10-3
d Power 1-36,	14-2 12-33 10-15 1-13 5-24 5-24 10-3

D

∆Measure	
Data Type	
Delay	
Delete	
Dir Name	
DISPLAY	
Display Resolution	
Dual List	

E

η mA	15-19
η mB	15-19
EXT TRIG IN	17-10
EXT TRIG OUT	17-10
Ext Trigger	10-4

F

FFT Points FFT Window	
FFT演算	
FILE	
File	
File List	
File Name	
Filter	
Format	12-6, 13-8, 13-12
Format Type	
Freq Range	

G

	15.10
GP-IBインタフェース	
Graph Color	
Graticule	

н

Harm Item No.	
HELP	
Hカーソル	11-16

Ī

IRange	5-7 5-14
Information	
Initialize	
INPUT	
Interpolate	
Item Amount	

Κ

Кеу	Board	 16-7

L

Label	
LCD Brightness	
Level	
Line Filter	

M

MakeDir	
Mapping	
MATH	
MEASURE	
Media Info	
Memory	
Message	
Min Order	
MISC	
Mode	
Motor Module	

索引

N	
NULL	
NULL機能	1-17, 4-7
Numeric	
Numeric Disp Items	
Numeric+Bar	
Numeric+Wave	8-6

<u>0</u>

<u> </u>	
OPアンプ	. 1-3. 1-4
Own ID	12-3

<u>P</u>

P-P圧縮	
Page Down Scroll Exec	
Page Up Scroll Exec	
Paper Feed	
Pc Formula	
Period	
Phase	
Pll Source	
PLLソース	
Pm	
Pole	
Position	
Power Module	
Printer	
Property	
PT	
PT Ratio	
PT比	
Pulse	

<u>R</u>

R/W 12-3
Range 12-1-
Rec Division 6-
Record Length
Rename 12-3
ROMバージョン 16-1
RS-232 17-1

<u>S</u>

S Formula	10-15
Σ List	
Scale Value	
Scaling	
Scaling Factor	
SCSI ID	
SCSIインタフェース	
Selftest	
Sense Type	
Sensor Range	
Sensor Ratio(mV/A)	
Set/Reset	
SETUP	
Setup	
Single List	
SINGLE START	
Slope	
Soft Key	
Source	

Т

Terminal	
Text Color	
Thd Formula	
Time Base	
TINTG	
Torque	
Trace	
Trace Label	
TREND	1-37
TRIGGER	
Туре	

U

U Range	
User Color	14-5, 14-6
User Defined	

V

V Zoom	
Vector	
Vカーソル	11-16

W

Wave	
Wave Display	
Wave Setting	
Wave+Bar	
Width Level	
Wiring	

<u>X</u>_____

<u>Y</u>

-35
)

Ζ_____

Zero Cross	
Zero Cross Filter	5-25, 15-8
Zoom Format	

ア

<u>r</u>	
アイソレーションセンサ	
アクイジションメモリ	1-4
アクセサリ	V
アナログ入力	
アベレージング(数値演算の)	1-35, 10-19
アベレージング(波形演算の)	

1

15-19
15-19
16-1
10-21
17-12
. 付-31

<u>ウ</u>

ウインドウ	
ウインドウトリガ	1-18.7-10
ウインドウ幅	

エッジトリガ	. 1-18, 7-7
エラーメッセージ	16-2
エリアシング	1-27
エレメント	1-12
演算子(波形演算の)	11-6
演算子(ユーザー定義ファンクションの)	10-14
演算式(波形演算の)	11-6
演算式(ユーザー定義ファンクションの)	10-13
演算点数	11-9
演算範囲(波形演算の)	11-3

<u>オ</u>

オートスケーリング	11-7
オートネーミング	
オートレンジ	1-13, 5-11, 5-18, 15-6, 15-7
遅れ	
オプション	ii
オプションの有無	

カ

カーソル	1-41, 11-16
カーソル設定	1-10, 10-6
カーソル測定	
カーソル測定時の表示	2-12
外形図(253710の)	17-14
外形図(253751の)	17-19
外形図(253752の)	17-24
外形図(253771の)	17-26
解析次数	10-23
解析次数上限值	
回転センサ信号入力用チャネル	
回転センサの信号タイプ	15-6
回転速度	15-12
外部クロック	6-5
外部クロック入力	
外部トリガ出力	14-1, 17-10
外部トリガ設定	1-11, 10-7
外部トリガ入力	
拡大	
拡張子(画面イメージの)	

拡張子(数値データの)	12-26
拡張子(設定情報の)	
拡張子(波形データの)	
形名	ii
紙送り	
画面の輝度	
画面の分割	1-28
画面表示	
画面分割	
カラー(外部プリンタ出力の)	
カラー(画面イメージの)	
観測時間	1-15, 6-2, 付-1

キ

<u> </u>	
	4-1
キーボードテスト	
基準動作状態	
基本周波数	1-16, 17-9, 付-30
基本波	
基本波成分	付-30
極数	

<u>ク</u>

グラティクル	
グラフィックカラー	
グリッド	

ケ

結線時の注意	
結線方式	1-11
結線方式の種類	
結線方式の選択	
結線例(600Vを超えるとき)	
結線例(PTやCTの)	
結線例(直接入力のときの)	
結線例(電流センサの)	
減衰定数	10-19

コ

交換周期	
高速フーリエ変換	
高調波	
高調波含有率	
高調波次数	
高調波測定モード	
効率	1-6
交流回路の三定数	
交流成分	
交流の電力	
交流のベクトル表示	
故障	
固定レンジ	1-13, 5-10, 5-18, 15-6
コピー(ファイルの)	
コメント	

<u>サ</u>

-	
最高表示分解能	
最大消費電力	17-12
サンプリングデータ	
サンプルレート	付-1

索引

索

索引

索引

<u> </u>	
	1-26
時間窓	11-9
Σ List	
Σファンクション	1-5, 1-8, 付-7
Σリスト	2-9
自己診断	
指数化平均	1-35, 1-38
システム構成	1-1
システムの状態	
十字目盛り	9-13
周波数測定ソース	
周波数人力レンジ(回転センサの)	
縮小	
出力コマンド(外部ブリンタへの)	
仕様コード	
使用局度	
初期化	
初期設定の一覧表	
ショクシャトル	
シリアルインタフェース	
シンクルリスト	
信号タイノ(回転センサの)	
具の実効値	
シンホルマーク	VI

ス

ズーム	1-29, 9-21
ズーム位置	1-30, 9-23
ズーム表示	
ズームボックス	1-30
ズーム率	
垂直軸	1-26
水平軸	1-26
数值演算	1-34
数値演算の再実行	1-36
数値演算モード	10-5
数値データ	1-5, 1-7
数値データの表示順一覧表	付-14
数値とバーグラフの同時表示	2-12
数値と波形の同時表示	2-12
数値の入力	4-1
数値表示(高調波測定モードの)	1-23, 2-8
数値表示(通常測定モードの)	1-22, 2-6
数値表示のリセット	1-25
スクロール	8-7, 8-17
スケーリング(回転速度の)	15-12
スケーリング(電力測定の)	1-13, 5-24
スケーリング(トルクの)	15-14
スケーリング(モータ出力の)	15-18
スケール値	1-33
進み	1-35
スタート/ストップ	4-4
すべり	15-16
スロープ	1-10

セ

静電容量	付-31
設置姿勢	3-3
設置条件	3-2
設定レコード長	1-15
セルフテスト	16-7
ゼロクロス検出回路	1-3, 1-4
ゼロクロス設定	1-10, 10-6

ソ

操作キー	2-3
操作キーテスト	
属性	12-31
測定/演算区間	1-10
測定項目	17-2
測定ファンクション	1-5, 1-7
測定ファンクション(高調波測定モードの)	17-4
測定ファンクション(通常測定モードの)	
測定ファンクションの記号と求め方	付-4
測定モード	1-5, 5-1
測定ファンクションの記号と求め方 測定モード	付-4 1-5, 5-1

タ

対処方法	16-1
/ 5.22,5.5.22	1-16.6-5
立ち上がり	1-10, 7-7
立ち下がり	1-10, 7-7
単純平均	1-6

<u>チ</u>

遅延時間	
チャネル	
中心レベル	
直列回路	

ッ

通常測定モート	+		1-	-5	5
---------	---	--	----	----	---

テ

データ圧縮	13-13
データ形式(画面イメージの)	13-13
データサイズ(画面イメージの)	13-13
データサイズ(数値データの)	12-26
データサイズ(設定情報の)	12-14
データサイズ(波形データの)	12-20
データのタイプ(数値データの)	12-26
データのタイプ(波形データの)	12-20
定格電源周波数	17-12
定格電源電圧	17-12
ディスク	
ディレクトリ	
テキストカラー	
デュアルリスト	
デルタ演算	1-34.10-9
デルタ演算結果の表示	
デルタ演算の求め方	付-8
雷圧入力端子	2-13
電圧レンジ	
 電源コード	ii
電源スイッチ	
電源ヒューズ	
電流センサ換算比	
電流センサ入力コネクタ	
電流センサ入力コネクタへの接続	
電流センサレンジ	. 5-18. 15-6
雷流入力端子	2-13

電流レンジ	
電力係数	1-14, 5-24
電力測定モジュール	2-13
電力損失	3-8
電力の基礎	付-25
電力レンジ	1-13, 5-11

<u>۲</u>

トータル効率	15-19
同期速度	15-16
動作環境	17-12
トリガ出力	
トリガ条件の対象	7-4
トリガスロープ	1-18, 7-7
トリガソース	1-18, 7-4
トリガタイプ	1-18, 7-7
トリガディレイ	1-21, 7-14
トリガポジション	1-21, 7-12
トリガモード	1-19, 7-2
トリガレベル	1-18, 7-7
取り込み中断	
取り込み停止	4-5
トルク	15-14
トルクメータ信号入力用チャネル	

<u>ナ</u>

内蔵プリンタ	13-1,	17-11
内部クロック		6-5

Ξ

入力信号の流れ	1-3
入力ゼロライン	1-26
入力端子への接続	
入力フィルタ	1-14
入力モジュール	iv, 2-13
入力モジュール着脱	3-4
入力レンジ(回転センサの)	15-6
入力レンジ(トルクメータの)	15-7

ハ

バーグラフ表示	1-32, 2-11
パーティション	12-9
波形演算	1-37
波形演算の再実行	
波形演算範囲	
波形演算モード	
波形の画面分割表示	1-28
波形のズーム	1-29
波形のスケール変換	
波形の表示補間	1-28
波形のラベル名	1-33, 9-17
波形の割り付け	
波形表示	
波形表示のON/OFF	
波形率	
波高率	
ハニング窓	1-40. 11-9
パルス数	15-12
パルス入力	15-1
パワースペクトラム	1-40
· · · · · · · · · · · · · · · · · · ·	

E	
 ひずみ波	
ひずみ率の演算式	
皮相電力の演算式	
日付・時刻の設定	
ヒューズ	iii, 16-11
ヒューズホルダ	
表示桁数	
表示更新周期	
表示項目順のリセット	
表示項目数	
表示スケーリング	
表示チャネル	
表示点間	
表示点数	
表示フォーマット	8-6, 9-4, 9-25, 9-31, 9-35
表示補間	
表示レコード長	
ピンNo	

フ

/	
 ファイル属性	
ファイル名	
フォトアイソレータ	
付加仕様	ii
複素関数	
付属品	iii, v
部品交換	
浮游容量	
プリトリガ	
プリンタカバー	
ブロック図	
プロパティ	
フロントパネル	
分解能	
23/31/16	

へ

平均值整流実効値校正	
並列回路	
ベクトル表示	
ヘルプ	

<u>ホ</u>

保管場所	
ポストトリガ	
保存環境	
補用品	V

マ

 マーカー	. 1-41.9-31.11-16
マーカーのジャンプ	11-19
窓	
マニュアルスケーリング	

<u>ム</u>

<u> </u>	
無効電力	 付-29

索-5

索引

<u>×</u>	
メッセージ	
メッセージの言語	
メディア	12-14
メモリテスト	
メモリの分割	6-4

Ŧ

モータの極数	15-16
モータ効率	15-19
モータ出力	15-18
モータ評価	
モータモジュール	2-14
モジュールの構成	16-10
文字列の入力	
モデル	

ユ

ユーザー定義ファンクション	1-34,	10-12
有効電力		. 付-29

ラ

ラックマウント	
ラベル名	1-33, 9-17

IJ

リアパネル	2-1
力率	
リスト表示	
リセット	
リリースアーム	13-2

レ

 レクタンギュラ窓	1-40
レコード長	1-15, 6-4, 付-1
レコード長の分割	
レベルゼロ	
レンジ	
レンジアップ	
レンジダウン	

 ロータリノブ	
ローラ	
ロール紙	iii, 13-2
ロック解除レバー	